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In this paper, we construct second- and third-order hyperbolic residual-distribution 
schemes for general advection–diffusion problems on arbitrary triangular grids. We 
demonstrate that the accuracy of the second-order hyperbolic schemes in [J. Comput. 
Phys. 227 (2007) 315–352] and [J. Comput. Phys. 229 (2010) 3989–4016] can be greatly 
improved by requiring the scheme to preserve exact quadratic solutions. The improved 
second-order scheme can be easily extended to a third-order scheme by further requiring 
the exactness for cubic solutions. These schemes are constructed based on the SUPG 
methodology formulated in the framework of the residual-distribution method, and thus 
can be considered as economical and powerful alternatives to high-order finite-element 
methods. For both second- and third-order schemes, we construct a fully implicit solver 
by the exact residual Jacobian of the proposed second-order scheme, and demonstrate 
rapid convergence, typically with no more than 10–15 Newton iterations (and about 
200–800 linear relaxations per Newton iteration), to reduce the residuals by ten orders 
of magnitude. We also demonstrate that these schemes can be constructed based on a 
separate treatment of the advective and diffusive terms, which paves the way for the 
construction of hyperbolic residual-distribution schemes for the compressible Navier–
Stokes equations. Numerical results show that these schemes produce exceptionally 
accurate and smooth solution gradients on highly skewed and anisotropic triangular grids 
even for a curved boundary problem, without introducing curved elements. A quadratic 
reconstruction of the curved boundary normals and a high-order integration technique on 
curved boundaries are also provided in details.

Published by Elsevier Inc.

1. Introduction

In many flow simulations, accurate predictions of solution gradients, such as velocity and temperature gradients, are 
essential for design and analysis purposes as they are directly related to the physical quantities of interest: e.g., the vis-
cous stresses, the vorticity, and the heat fluxes. However, it is widely accepted that accurate and smooth solution gradients 
cannot be achieved with conventional schemes on fully irregular unstructured grids [1,2]. In conventional schemes, the gra-
dients are obtained typically with a lower order of accuracy (e.g., through reconstruction of primary variables), and they 
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are usually subject to numerical oscillations on such grids. The resolution of this issue is very important in justifying the 
use of high-fidelity models in engineering design, analysis, and optimization, especially for applications involving complex 
geometries. The ability to predict the gradients on irregular grids is even more critical for grid adaptation, a vital tech-
nique for efficient CFD calculations in high-order methods [3], because the grid adaptation almost necessarily introduces 
irregularity in the grid. In fact, current practices in grid adaptation often avoid adaptation in certain regions such as within 
boundary layers where grid irregularity has a severe impact on the solution quality [4]. Therefore, numerical schemes that 
can accurately predict solution gradients on irregular grids need to be developed, so that the power of grid adaptation can 
be fully exploited.

There have been some efforts in the residual-distribution community in developing schemes that provide high-order 
solutions [5–10], but little attention is paid, in general, in developing schemes that produce accurate and smooth high-order 
solution gradients. A good review of residual-distribution schemes is given in Ref. [11], in which a third-order residual-
distribution scheme was presented for quadratic (P2) elements. A different third-order residual-distribution scheme was 
also proposed and applied to RANS equations in Ref. [12], and for real-gas computations in Ref. [13]. These schemes pro-
duce no better than second-order accurate solution gradients, whether linear or quadratic elements are employed. A more 
improved third-order residual-distribution scheme was later proposed in Refs. [14,15], and third-order accurate solution 
gradients were reported on some unstructured grids, including hybrid elements, using a proposed special gradient recon-
struction strategy. However, the authors have noted that the third-order accurate solution gradients could not be reproduced 
for randomly distorted triangular elements. Quality of the predicted solution gradients using these schemes were not re-
ported and therefore, are unknown.

The first-order hyperbolic system method (or the hyperbolic method for short), with which the solution and the solution 
gradients are simultaneously computed by solving a hyperbolic system for diffusion, provides a platform for construction of 
high-order schemes that could potentially produce high-order solution gradients that are both accurate and free of numerical 
noise.

The hyperbolic method was first studied for diffusion in Ref. [16] and then for advection–diffusion in Ref. [17] with 
Residual-Distribution (RD) schemes. Later, the method was demonstrated for the compressible Navier–Stokes equations by 
a second-order Finite-volume (FV) scheme [18]. Since then, there have been efforts in developing high-order hyperbolic 
schemes in the finite–volume method [19–21], in the active flux method [22], and in the RD method [23,24] for unsteady 
computations.

In this paper, we focus on the development of hyperbolic RD schemes for two-dimensional problems, extending the 
previous work [16,17], with several important advances.

• Improved Accuracy: We propose to construct a second-order scheme that preserves exact quadratic solutions, which 
can be accomplished by the curvature correction technique [8]. The resulting scheme remains compact for viscous 
problems, and produces significantly improved solution gradients over the previous schemes, which do not preserve 
exact quadratic solutions.

• Third-Order Accuracy: Extending the improved second-order scheme, we construct a third-order scheme that preserves 
exact cubic solutions. The construction requires quadratic least-squares (LSQ) gradients and a high-order source term 
discretization developed here.

• Nonlinear Equation: The improved schemes are extended to a nonlinear advection–diffusion equation by the precondi-
tioned conservative formulation introduced in Ref. [18].

• High-Order on Linear Elements: We demonstrate that the third-order scheme does not require curved elements for 
curved boundary problems; it gives more accurate solution and gradients than the second-order scheme on the same 
linear grids (straight-sided elements). Our scheme is designed to be third-order accurate on straight-sided triangles, 
even for geometries containing curved boundaries. This is a significant advantage, because most high-order methods 
require curved geometries to be represented by high-order curved elements; see Ref. [3]. Our proposed high-order 
scheme is not the only scheme that produces high-order solution on unstructured, straight-sided meshes. For example, 
the technique of Ref. [25], which was applied to Discontinuous Galerkin (DG) method, produces high-order accurate 
solution for geometries containing curved boundaries by locally approximating the curvature of the physical geometry 
(i.e., high-order normals) using information from the neighboring boundary elements (i.e., a local operation) with all 
triangles kept as straight-sided elements (not curved). The finite-volume (FV) scheme of Ref. [26] is another example, 
where a third-order solution was obtained on the linear elements with a quadratic reconstruction of the boundary 
normals for curved boundaries. The third-order residual-distribution schemes of Refs. [27,8,7], which are developed 
based on reconstruction techniques, are additional examples. Our proposed third-order scheme is among these schemes, 
and is more aligned with the FV scheme of Ref. [26] because the proposed third-order scheme here produces third-order 
solution gradients for geometries containing curved boundaries that are represented by straight-sided meshes.

• Non-Unified Approach: Instead of the fully integrated approach of discretizing the hyperbolic advection–diffusion system 
as in Ref. [17], we discretize the advective and diffusive terms separately. This approach will enable the extension to 
the compressible Navier–Stokes equations for which the eigenstructure of the whole system has not been discovered 
yet.

• Fully Implicit Solver: We construct a fully implicit solver for both second- and third-order schemes. For practical appli-
cations, explicit iterations considered in Refs. [16,17] are not efficient enough, and a fully implicit solver is needed. The 
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