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In this paper, a gas-kinetic flux solver (GKFS) is presented for the simulation of incom-
pressible and compressible viscous flows. In this solver, the finite volume method is 
applied to discretize the Navier–Stokes equations. The inviscid and viscous fluxes at the 
interface are obtained simultaneously via the gas-kinetic scheme, which locally reconstruct 
the solution for the continuous Boltzmann equation. Different from the conventional gas-
kinetic BGK scheme [1], a simple way is presented in this work to evaluate the non-
equilibrium distribution function, which is calculated by the difference of equilibrium 
distribution functions at the cell interface and its surrounding points. As a consequence, 
explicit formulations for computing the conservative flow variables and fluxes are simply 
derived. In particular, three specific schemes are proposed and validated via several 
incompressible and compressible test examples. Numerical results show that all three 
schemes can provide accurate numerical results for incompressible flows. On the other 
hand, Scheme III is much more stable and consistent in simulation of compressible flows.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In conventional computational fluid dynamics (CFD), Euler equations are usually used to simulate inviscid flows while 
Navier–Stokes equations are commonly used for simulation of viscous flows. Various numerical methods have been devel-
oped to solve these macroscopic governing equations [2–4], among which the finite volume method (FVM) is one of the 
most popular approaches. In the FVM, the discrete forms of governing equations usually involve the conservative variables 
at cell centers and numerical fluxes at cell interfaces. In the solution process, the numerical fluxes at the cell interfaces are 
needed to be constructed from the conservative variables at the cell centers.

Currently, there are three major approaches to evaluate the numerical fluxes in CFD. The first one is based on the smooth 
function approximation. This is a mathematical approach. In this method, a smooth function, such as polynomial approxima-
tion [5], is applied to approximate the solution. The related coefficients in the polynomial approximation are determined by 
collocation method. However, this solver is not applicable to problems with discontinuities. To resolve discontinuity prob-
lems, the Riemann solver and approximate Riemann solvers, which can be considered as the second one, are extensively 
used in the last few decades. Godunov [6] firstly presented the first-order upwind scheme for the hyperbolic conservation 
laws in 1959. After that, numerous approximate Riemann solvers were developed [7–12]. In general, the approximate Rie-
mann solvers can only evaluate the inviscid flux and it is still challenging to directly solve the viscous compressible flows. 
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One of the popular ways is to treat the convective terms and dissipative terms separately, which means that the inviscid flux 
is evaluated by the approximate Riemann solvers and the viscous flux is calculated by the smooth function approximation.

Another type of flux solver is called the gas-kinetic scheme, which locally applies the Boltzmann equation to evalu-
ate inviscid and viscous fluxes simultaneously. There are two common types of gas-kinetic schemes: the kinetic flux vector 
scheme (KFVS) and gas-kinetic Bhatnagar–Gross–Krook (BGK) scheme. In KFVS, the collision term vanishes in the Boltzmann 
equation. There are two stages in KFVS: free transport and collision. In the free transport stage, the collisionless Boltzmann 
equation is solved to calculate the flux at the interface. In the collision stage, the artificial collisions are added in the calcu-
lation of initial Maxwellian distribution at the beginning of next time step. Owing to the large dissipation introduced, the 
KFVS performs stably for strong shock waves and expansion waves [13]. However, it is demonstrated in [1] that the KFVS 
scheme usually gives more diffusive results than the Godunov or flux difference splitting (FDS) scheme because the numer-
ical dissipation in KFVS is proportional to the mesh size. Thus, the KFVS is not able to give accurate NS solutions except for 
cases in which the physical viscosity is much larger than the numerical viscosity. Some of representative researches on the 
KFVS include Pullin [14], Perthame [15], Mandal and Deshpande [16], and Chou and Baganoff [17].

The gas-kinetic BGK scheme was firstly proposed by Prendergast and Xu [18] in 1993 and then developed gradually 
afterwards [1,19]. In this method, the BGK collision model is adopted in the gas evaluation stage to obtain the numerical 
fluxes across the interface. As a consequence, the dissipation in the transport can be controlled by a real collision time, 
which is a function of dynamic viscosity and pressure. In contrast to conventional upwind schemes, the gas-kinetic BGK 
scheme computes the inviscid and viscous fluxes simultaneously from the solution of Boltzmann equation with collision 
term. In the work of Xu [1], it has been shown that the gas-kinetic BGK scheme is able to generate a stable and crisp shock 
transition in the discontinuous region with a delicate dissipative mechanism. At the same time, an accurate Navier–Stokes 
solution can be obtained in the smooth region. Moreover, it is demonstrated that the entropy condition is always satisfied 
in the gas-kinetic BGK scheme and the “carbuncle phenomenon” is avoided for hypersonic flow simulations [20]. Owing to 
the advantages of gas-kinetic BGK scheme, it has attracted more and more attention and has been applied to various flow 
problems [21–26]. Recently, Xu and Huang [27] proposed a unified gas-kinetic scheme which can perform both continuum 
and rarefied flow computations with discretized particle velocity space.

In spite of these advantages, the gas-kinetic BGK scheme also suffers from some drawbacks. It is usually more compli-
cated and inefficient than conventional CFD schemes. To be more specific, numerous terms and coefficients associated with 
non-equilibrium distribution functions should be calculated to yield the numerical fluxes at each interface and each time 
step. Moreover, it is an arduous task to get the explicit expression for the numerical flux. Owing to the complexity and low 
computational efficiency, the gas-kinetic BGK scheme is a bit difficult for new users to implement. In the literature, several 
works have been done to simplify this scheme. Chae et al. [28] abandoned a time evolution term in the integral solution of 
BGK model and they claimed that the computational efficiency and convergence were improved. May et al. [29] proposed 
two modifications to the conventional gas-kinetic BGK scheme. At first, they proposed a new formulation to the calculation 
of the initial non-equilibrium terms in the consideration of relaxation state. A new time derivative was also introduced to 
reduce the CPU time. In the work of Tang [30], the spatial derivative of the equilibrium distribution function across the 
interface is assumed to be continuous rather than piecewise linear used in the conventional scheme. All the time-related 
terms were not considered in the calculation of flux. There are some other efforts to improve the accuracy of gas-kinetic 
BGK scheme, including DG method [31,32], Runge–Kutta method [33] and so on.

Most of the above modifications are to improve the original gas-kinetic BGK scheme, where the non-equilibrium distri-
bution function is approximated by a low order polynomial in terms of time, physical space and phase velocity space. In 
this way, many terms associated with phase velocity, space coordinate and time should be considered. The simplification in 
these terms may add more uncertainty to the derivation of the gas-kinetic BGK scheme. This motivates the present work. 
We aim to simplify the original gas-kinetic BGK scheme while keep its intrinsic advantages at the same time.

In the present work, the non-equilibrium distribution function will be approximated by a simple way. At any cell in-
terface, the distribution function can be expressed as f = f eq + f neq , where f eq is the equilibrium distribution function 
and f neq is the non-equilibrium distribution function. The equilibrium distribution function f eq can be simply calcu-
lated by the conservative variables using Maxwellian distribution function. According to the compatibility condition, the 
non-equilibrium distribution function f neq has no contribution to the conservative variables [34], but it has effect on the 
numerical fluxes. With Chapman–Enskog expansion analysis, to recover Navier–Stokes equations, f neq can be approximated 
by −τ (gt + ugx + vg y), where τ is the collision time, g is the equilibrium distribution function f eq , and subscripts rep-
resent the derivative. In the conventional gas-kinetic schemes, f neq is approximated by a low order polynomial and g , 
which involves many coefficients. It is indeed that determination of those coefficients and their implementation into the 
gas-kinetic scheme make the solver be complicated. Recently, it was found that f neq can be approximated by the difference 
of the equilibrium distribution functions at the cell interface and its surrounding points with a small streaming step. As the 
equilibrium distribution function at the surrounding points can be easily given by the conservative variables at cell centers 
through interpolation, the equilibrium distribution function at the cell interface can be obtained from a streaming process at 
surrounding points. Thus, f neq can be explicitly calculated. Then, the numerical fluxes can be computed without involving 
any coefficients. The above idea was first applied in the development of lattice Boltzmann flux solver (LBFS) [35–38]. It was 
shown that LBFS can be accurately and efficiently applied to solve many fluid flows. However, due to intrinsic limitation of 
lattice Boltzmann method, LBFS is limited to the simulation of incompressible flows. To simulate compressible flows, Yang 
et al. [13,39] extended the idea to the circular function-based gas-kinetic scheme. In this scheme, all the particles are as-



Download English Version:

https://daneshyari.com/en/article/518081

Download Persian Version:

https://daneshyari.com/article/518081

Daneshyari.com

https://daneshyari.com/en/article/518081
https://daneshyari.com/article/518081
https://daneshyari.com

