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Periodic Boundary Conditions (PBC) are often used for the simulation of complex physical 
systems. Using the Gauss linking number, we define the periodic linking number as a 
measure of entanglement for two oriented curves in a system employing PBC. In the case 
of closed chains in PBC, the periodic linking number is an integer topological invariant 
that depends on a finite number of components in the periodic system. For open chains, 
the periodic linking number is an infinite series that accounts for all the topological 
interactions in the periodic system. In this paper we give a rigorous proof that the periodic 
linking number is defined for the infinite system, i.e., that it converges for one, two, and 
three PBC models. It gives a real number that varies continuously with the configuration 
and gives a global measure of the geometric complexity of the system of chains. Similarly, 
for a single oriented chain, we define the periodic self-linking number and prove that it 
also is defined for open chains. In addition, we define the cell periodic linking and self-
linking numbers giving localizations of the periodic linking numbers. These can be used to 
give good estimates of the periodic linking numbers in infinite systems. We also define the 
local periodic linking number associated to chains in the immediate cell neighborhood of a 
chain in order to study local linking measures in contrast to the global linking measured by 
the periodic linking numbers. Finally, we study and compare these measures when applied 
to a PBC model of polyethylene melts.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The entanglement of filaments arises in many physical systems, such as polymer melts or fluid flows. The rheological 
properties of polymer melts are determined primarily by the random-walk-like structure of the constituent chains and the 
fact that the chains cannot cross [1]. Edwards suggested that entanglements effectively restrict individual chain conforma-
tions to a curvilinear tubelike region enclosing each chain [1]. For very short time scales, chain segments are allowed to 
freely fluctuate in all directions until their displacements become commensurate with the tube diameter, a, which is related 
to the average distance between entanglements, Ne , by a2 = Neb, where b is the bond length [2–4]. The axis of the tube is a 
coarse-grained representation of the chain, called the primitive path (PP). Several methods have been developed for extract-
ing the PP network [5–11]. Two geometrical methods capable of efficiently reducing computer generated polymer models 
to entanglement networks are the Z1-code [7,6,12,13] and the CReTA algorithm [8]. The tube model is very successful and 
provides a unified view of networks and entangled polymer melts on a mean-field level. Simulations as well as experiments 
back up the microscopic picture of a tube [14]. Despite these advances, our understanding of entanglement is incomplete 
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and it is an open question whether these simpler models can be derived from more fundamental topological considera-
tions. The reason is the difficulty to connect the entanglement properties of the chains at two different scales. Indeed, one 
can distinguish between the local obstacles to the motion of the chains, and the conformational complexity of the entire 
conformations of the chains in the melt. Similarly, vortex lines in a fluid flow may be seen as mathematical curves that 
are entangled [15–17]. Helmholtz discovered that the vortex lines move with the fluid in a perfectly inviscid flow [18]. 
Helmholtz’ theorem implied that the global topology of vortex lines remains unchanged throughout the flow evolution. The 
helicity of a fluid flow confined to a domain D (bounded or unbounded) of three-dimensional Euclidean space R3 is the in-
tegrated scalar product of the velocity field �u(�x, t) and the vorticity field �ω(�x, t) = ∇ × �u, H = ∫

D �u · �ωdV [19,20,15]. Helicity 
is important at a fundamental level in relation to flow kinematics because it admits topological interpretation in relation to 
the linking of vortex lines of the flow [15] (see discussion on the linking number in the next paragraph). Invariance of the 
helicity is then directly associated with invariance of the topology of the vorticity field. Similarly, any solenoidal vector field 
that is convected without diffusion by a flow will have conserved topology and an associated helicity invariant. Helicity 
plays a crucial role in the problem of relaxation to magnetostatic equilibrium, a problem of central importance in the con-
text of thermonuclear fusion plasmas [19,16]. Helicity is also related to transition to turbulence [21–23]. When the fluid is 
conducting, magnetic helicity is an invariant in the ideal case and is central to minimum energy equilibria in plasmas such 
as in spheromaks, or in solar coronal mass ejections. It is also known that the generation of large-scale magnetic fields oc-
curs due to small-scale mechanic helicity and that in the presence of both rotation and stratification, helicity is created and 
thus a dynamo is facilitated in a wide variety of astrophysical settings [24,22,25]. Polymer and vortex entanglement share 
some common features, especially when there is mutual interference, as in the case of polymer solutions. The addition of 
small amounts of long chain polymers to flowing fluids produces large effects on a wide range of phenomena such as the 
stability of laminar motion, transition to turbulence, vortex formation and break-up, turbulent transport of heat, mass and 
momentum, and surface pressure fluctuations [26].

Edwards first pointed out that in the case of ring polymers, the global entanglement of the chains can be studied by 
using tools from mathematical topology [27,28]. A knot (or link) is one (or more) simple closed curve(s) in space. Knots 
and links are classified with respect to their complexity by topological invariants, such as knot or link polynomials [29–31]. 
Since Edwards, many studies have been devoted to the topology of polymer rings and its relation to physical properties 
[32,5,33–35]. In [34] a direct relation between distinct topological states and Ne has been revealed. However, most of these 
methods cannot be applied to systems of open chains. The study of global entanglement has been very useful especially 
in the study of biopolymers [36,37]. Indeed, open curves are not knotted in the topological sense, but they can form 
complex conformations, which we call entangled. Unfortunately, it is not easy to relate intuitive notions of entanglement 
with topology [38,39]. A classical measure of entanglement that extends naturally to open chains is the Gauss linking 
integral, lk. In the case of closed chains the Gauss linking number is a classical topological integer invariant [40] that is 
related to the helicity of fluid flows and magnetic fields [41]. More precisely, consider an inviscid incompressible fluid, where 
the vorticity field is zero except in two closed vortex filaments of strengths (associated circulations) κ1, κ2, whose axes are 
C1, C2. Then the helicity is H = 2lk(C1, C2)κ1κ2. For pairs of “frozen” open chains, or for a mixed frozen pair, the Gauss 
linking integral can be applied to calculate an average linking number. For open or mixed pairs, the calculated quantity is 
a real number that is characteristic of the conformation and changes continuously under continuous deformations of the 
constituent chains [42]. Thus, the application of the Gauss linking integral to open chains is very clearly not a topological 
invariant, but a quantity that depends on the specific geometry of the chains. In a similar manner, the Gauss linking integral 
can be applied to calculate the writhe or the self-linking number of a “frozen” configuration of one open chain. It is true 
that a complicated tangle and a really untangled curve can have essentially the same writhe, but it takes special effort to 
construct untangled complicated looking curves with high absolute writhe. Exactly the same considerations apply for the 
linking number and the self-linking number. Indeed, computer experiments indicate that the linking number and the writhe 
are effective indirect measures of whatever one might call “entanglement”, especially in systems of “random” filaments [41,
27,43–48,42,49–54] and it has been shown that they can provide information relevant to the tube model [52,53].

One of the reasons why knots in polymer melts and turbulent flows have not been studied extensively is the problem 
of handling systems employing PBC [34,55]. Notice that the entire system is created by infinite copies of the simulation 
cell, and so, applying a traditional measure of entanglement would imply computations involving an infinite number or, at 
least, a very large number of chains. Furthermore, there exists an infinite number of pairs of chains in the same relative 
position, giving infinite repetitions of a same pattern. Ideally, one would like to compute a linking measure directly from 
one cell, but the arcs of the chains inside the cell are relatively short (see Fig. 1). In order to capture the greater degrees 
of entanglement, or even complex knotting, a large number of arcs must be employed in the creation of a complex chain. 
In [34,56] the Jones polynomial for systems employing one or two PBC was used to study entanglement in ring polymers. 
The method presented therein cannot be extended to systems employing 3 PBC. Moreover, the definition of the Jones 
polynomial is not meaningful when one deals with open chains. In this paper we propose to use the Gauss linking number 
and its extension to open chains to define a measure of entanglement for chains in one, two or three PBC. This gives a 
measure of global entanglement of the chains and could be used in the estimation of a topological energy in a system of 
open, closed or mixed chains with PBC.

In [57], the basis for the study of entanglement in systems employing PBC was introduced, and the local periodic linking 
number was defined and applied to samples of polyethylene (PE) melts. In this paper the periodic linking number is defined 
and its properties for closed, open or infinite chains, and its relation to the Gauss linking number and the local periodic 
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