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A numerical scheme for the convection–diffusion–reaction (CDR) problems is studied 
herein. We propose a finite difference method on a special grid for solving CDR problems 
particularly designed to treat the most interesting case of small diffusion. We use the 
subgrid nodes in the Link-cutting bubble (LCB) strategy [5] to construct a numerical 
algorithm that can easily be extended to the higher dimensions. The method adapts very 
well to all regimes with continuous transitions from one regime to another. We also 
compare the performance of the present method with the Streamline-upwind Petrov–
Galerkin (SUPG) and the Residual-Free Bubbles (RFB) methods on several benchmark 
problems. The numerical experiments confirm the good performance of the proposed 
method.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that the exact solution of the convection–diffusion–reaction (CDR) problems may contain layers when 
some problem parameters are too big compared to others. Typically in this model problem, but also in real fluid flow 
simulation, the major difficulty is the appearance of the nonphysical oscillations that pollute the numerical solution in the 
whole domain, while the exact solution only shows boundary or internal layers. To overcome this difficulty, several numer-
ical recipes have been evolved over the years [32,33] among them a commonly used one is the finite difference method 
[1,11,13,27]. The early numerical solutions were obtained by using standard finite difference scheme of upwind and cen-
tered type on a uniform mesh and then refining the mesh more and more in order to capture the boundary/internal layers. 
However, even for 1-D problems those methods were inefficient and accurate solutions could not be obtained for higher 
dimensions. In [3], Bakhvalov considered an upwind difference scheme on a layer-adapted meshes. They are very fine inside 
the boundary layer and coarse outside. Moreover, in 1990s the Russian mathematician Shishkin showed that one could use 
a simpler piecewise uniform mesh to obtain reasonable approximations [14,36]. This idea has been propagated throughout 
the 1990s by a group of Irish mathematicians: Miller, O’Riordan and Farrell [29]. The simplicity of those approaches is due 
to the use of equidistant subintervals on both sides of a transition point and this property is considered to be one of its 
major attractions. However, it requires the precise location of the layer structure a priori.
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Another major approach to obtain reasonable approximations for the CDR problem is the finite element method (FEM) 
[2,14,21]. The most successful classes of FEMs for treating convection-dominated problems are achieved by the stabilized 
formulations [16,18,19,22,24,37]. As an important and well-known example to that class, the Streamline-Upwind/Petrov–
Galerkin (SUPG) method could be mentioned that is first proposed by Hughes and his co-workers [10]. SUPG method is 
based on enlarging the variational formulation by adding diffusion in the streamline direction while preserving the con-
sistency. Despite the success of SUPG method, the need for the proper choice of stabilizing parameter is considered as a 
major drawback of the method. Regarding that fact, intrinsically stable methods such as the Residual-Free Bubbles (RFB) 
method has been developed [2,4,8,9,17]. The main idea underlying the RFB method is to enrich the finite element space, 
instead of a modification of the variational formulation, by a set of special functions, so called bubble functions. A thor-
ough comparison of some of these methods can be found in [12,28,38]. However, it requires to solve a local differential 
equation which may not be easier than to solve the original one [15]. That observation has motivated the introduction of 
a further option so-called the Pseudo Residual-free Bubble (PRFB) method which approximates the bubble functions on a 
specially chosen subgrid [6,7,31,34,35]. Roughly speaking, such grid points can be constructed by minimizing the residual 
of a local differential equation with respect to L1 norm so that small scale-effect of the exact solution could be accurately 
represented in the numerical approximation through the use of those approximate bubble functions [34]. Alternatively, the 
Link-Cutting Bubbles (LCB) method that is based on the plain Galerkin variational formulation on a special grid was pro-
posed by Brezzi et al. in [5] and it could be viewed as a similar, yet interesting option for another stable discretization in 
1D. However, extension of that strategy to the higher dimensions is not a trivial task. It is also worth mentioning that the 
convection–diffusion–reaction equations with positive and negative reactive terms (source terms) is considered in [23].

The algorithm investigated in this work is motivated by a simple splitting of the 2-D CDR equation into the sum of two 
1-D equations [25]. It combines the ideas of the LCB method in [5] and finite difference methods (FDM) on special meshes. 
Indeed, we will use the subgrid nodes in the LCB strategy and construct a FDM for solving CDR problems. Thus, we develop 
a numerical recipe for solving CDR problems that is simple to use, easy to implement and can easily be extended to higher 
dimensions. We also compare the performance of the present method with the well-known SUPG and RFB methods on 
several benchmark problems. A wide range of problem parameters has been examined on both structured and unstructured 
meshes and the corresponding numerical results are presented.

The layout of the paper is as the following. We briefly recall the basic idea of the LCB method in Section 2. In Section 3, 
we describe the details of the numerical method proposed and discuss the generation of the grid for two dimensional 
problem. Finally, we perform the numerical tests for several benchmark problems in both 2D and 3D in Section 4.

2. A review of the Link-Cutting Bubble strategy in [5]

We consider the following linear elliptic convection–diffusion–reaction problem on a unit interval I = (0, 1){
Lu = −εu′′ + βu′ + σu = f (x) on I,

u(0) = u(1) = 0,
(1)

under the assumptions that the diffusion coefficient ε is positive constant, convection field β and reaction field σ are 
non-negative constants. We denote the decomposition of I into subintervals by Th = {Kk} where Kk = (xk−1, xk), k = 1, . . . , N
and the size of the interval Kk by hk = xk − xk−1.

The Link-Cutting Bubble (LCB) strategy introduced in [5] is designed for one-dimensional convection–diffusion–reaction 
problem and it aims to mimic the stabilizing effect of Residual Free Bubbles (RFB), without actually computing them. To do 
this, we choose a suitable subgrid made of two points inside each element and we take the bubbles which are piecewise 
linear on the subgrid. The strategy for choosing the subgrid is as follows: Consider a typical element, (x1, x2), then the 
subgrid nodes are obtained by adding two extra nodes, say z1 and z2 satisfying x1 < z1 < z2 < x2 and

z1 − x1 = min

{
hk − 2(x2 − z2),

3β + √
9β2 + 24εσ

2σ

}

x2 − z2 = min

{
hk

3
,
−3β + √

9β2 + 24εσ

2σ

}
. (2)

Once the subgrid nodes are constructed, the LCB strategy works as the standard Galerkin method with piecewise linear 
basis functions on augmented mesh. For the behavior of the scheme at various regimes, see [5].

3. The construction of the numerical method

In this section, using the subgrid nodes in the LCB strategy, we propose a numerical algorithm for solving convection–
diffusion–reaction (CDR) problems which can easily be extended to the higher dimensional problems. Now, consider the 
following constant coefficient linear elliptic convection–diffusion–reaction problem in a polygonal domain �:
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