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A kinetic Monte Carlo model suited for self-consistent transport studies is proposed and 
tested. The Monte Carlo collision operator is based on a widely used model of Coulomb 
scattering by a drifting Maxwellian and a new algorithm enforcing the momentum 
and energy conservation laws. The difference to other approaches consists in a specific 
procedure of calculating the background Maxwellian parameters, which does not require 
ensemble averaging and, therefore, allows for the use of single-particle algorithms. This 
possibility is useful in transport balance (steady state) problems with a phenomenological 
diffusive ansatz for the turbulent transport, because it allows a direct use of variance 
reduction methods well suited for single particle algorithms. In addition, a method for the 
self-consistent calculation of the electric field is discussed. Results of testing of the new 
collision operator using a set of 1D examples, and preliminary results of 2D modelling in 
realistic tokamak geometry, are presented.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The most common tool for self-consistent transport modelling of edge plasmas in tokamaks is fluid modelling, like 
Ref. [1], where hydrodynamic (Braginskii [2]) model is used for plasma transport along the magnetic field, and an ad hoc
ansatz (e.g., Bohm-like diffusivities) is used for the anomalous transport across the field. Such hydrodynamic modelling is 
numerically feasible, but there is strong evidence (both experimental and theoretical, see, e.g., a review paper [3]) that some 
effects which cannot be described in this framework (kinetic effects) play a significant role in transport phenomena.

One of the problems is the non-local nature of transport: under typical edge plasma conditions fluid equations are used 
somewhat outside their validity range. E.g., parallel heat flux in the divertor region is not a function of local temperature 
gradients only, but also contains contributions of the profile over several mean free path lengths. This problem is most 
pronounced for electron heat conduction, but there is some evidence that ion heat conduction and even parallel ion vis-
cosity should be corrected as well, see Ref. [4]. Moreover, near the wall the distribution function can be very far from the 
Maxwellian – here the hydrodynamics can be applied in the sense of an order-of-magnitude-estimate at best. Another prob-
lem is the drift motion of particles – it is a non-trivial problem to take into account this phenomenon in the framework of 
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fluid model [5–7]. This effect, which in particular leads to the dependence of divertor fluxes on the sign of the magnetic 
field, is important not only in tokamaks but also in stellarators [8,9]. In any case, it is impossible to distinguish passing 
and trapped particles in hydrodynamics – related effects, which are formally described by the anisotropic pressure tensor 
in Chew–Goldberger–Low form, are necessarily neglected in the MHD approach using an isotropic pressure in the closure of 
the energy equation. To treat such effects rigorously, a kinetic equation needs to be solved.

There are many attempts to improve the hydrodynamic models by means of kinetic corrections to the fluxes and (some-
times) boundary conditions, e.g. [10–12]. Here, the heat flux is calculated as an integral over the whole domain and is used 
in the fluid model afterwards. A related approach is hybrid modelling [13,14] – here fluid and strongly simplified kinetic 
equations are solved in turn (hydrodynamical profiles of density, velocity and temperature are used as a background to cal-
culate kinetic fluxes and vice versa) until a common steady state reached. It should be noted that the very existence of this 
steady-state solution here can be questioned – in practice one uses much more simple “flux limiter” expressions instead [3].

There is an obvious need for a numerically feasible self-consistent kinetic model of plasma transport phenomena. One of 
the main challenges here is the dimensionality of the problem, which increases by two as compared to the fluid approach in 
case of the gyrokinetic (generally 5D) equation. In cases where dimensionality reduction is possible, such as in axisymmetric 
devices in the long mean free path limit (reduction to 3D by bounce-averaging) Vlasov–Fokker–Planck solvers can treat the 
problem efficiently. For finite collisionality, even in the axisymmetric tokamak (case considered here as an example) problem 
stays 4D and is therefore challenging for most methods in terms of memory requirements. (Another example of a 4D kinetic 
problem is the local solution of a drift kinetic equation at given flux surface in 3D magnetic geometries [15,16] where the 
memory requirements are also rather demanding.) Finally, in case of global solutions in 3D geometry (stellarators, tokamaks 
with external magnetic field perturbations) the problem is essentially 5D, and one has to rely on test particle (Monte Carlo) 
methods [17,18]. Further advances in the development of such methods which can be used for 3D magnetic geometries is 
the main purpose of this paper.

The first step in this direction should be a suitable Coulomb collision operator suitable for transport balance (steady 
state) problems with a phenomenological diffusive ansatz for the turbulent transport. During the last few decades there 
have been significant advances in the development of momentum and energy preserving Monte Carlo realizations of the 
collision operator for local problems (computation of neoclassical transport coefficients) as well as Particle in Cell (PIC) codes 
oriented at self-consistent modelling of the distribution function and electromagnetic fields involved in collective phenom-
ena (plasma turbulence). These methods can, in principle, treat the Fokker–Planck collision operator accurately. The direct 
implementation of this operator – a self-consistent calculation of the drag and diffusion coefficients using the actual distri-
bution function – is discussed in Ref. [19]. The authors overcome the difficulties in principle, but their approach remains 
too numerically extensive. An alternative approach – binary collisions – has been suggested by Takizuka and Abe [20]. This 
algorithm involves the pairing of scattering particles in each computational cell at random and then small-angle collisions 
are performed pairwise. This procedure naturally conserves particles, momentum and energy within each spatial cell, and 
has been generalized for weighted particles [21] and has been vectorized [22]. Now it is widely used in kinetic codes like 
VPIC [23] and ASCOT [24]. Nevertheless, the usage of the exact binary collisions for self-consistent transport modelling of 
fusion devices remains inordinately time consuming (see, e.g., Ref. [25]). The main difficulty here is the difference between 
the characteristic times (also called stiffness) of the problem: on the one hand, we need to follow the evolution of the sys-
tem for the time of perpendicular (anomalous) transport, τ⊥ ∼ a2 D−1

⊥ (here a is the minor radius and D⊥ is the anomalous 
perpendicular diffusion coefficient), which is hundreds of milliseconds. On the other hand, our time step is restricted by 
the electron collision time (∼ 10−8 s at the edge of fusion devices). The requirement on the angle of scattering to be small 
adds another two orders of magnitude to the degree of stiffness. The transport time scale τ⊥ , which has to be resolved in 
transport problems is much larger that the corresponding time scale in local problems (the longer of the collision time and 
the time for relaxation over the magnetic surface) or the turbulence saturation time typical for PIC modelling. For this rea-
son, exact kinetic models like ASCOT [24] cannot produce profiles of plasma parameters by themselves – they must either 
assume background profiles or be used in combination with fluid codes like B2SOLPS5.0 [26].

One is therefore forced to sacrifice some accuracy in the description of collisions for the sake of efficiency. This has 
been done, e.g., in Refs. [27,28,25]. Jones et al. [27] introduced the concept of a “collisional field” – a Monte-Carlo-oriented 
Langevin formalism with velocity-space diffusion D and dynamical friction F coefficients independent of velocity. This 
shortcoming has been removed by Manheimer et al. [28] who calculated D(v) and F (v) using the actual distribution 
function; the only assumption was that the distribution of the “scatterer” particles is isotropic in its mean frame of reference. 
This procedure turns out to be quite noisy; the authors overcome this problem by averaging in space (along magnetic 
field lines). On the other hand, the assumption of a non-Maxwellian, but isotropic, distribution function is too restrictive. 
Therefore, in Ref. [25] a Maxwellian distribution has been assumed for the scatterer particles. Its parameters (density, drift 
velocity and temperature) are calculated by averaging over the particles populating the cell of interest. In addition, in order 
to avoid a systematic error which may appear in case where the conservation laws are fulfilled only statistically [29], the 
exact conservation of momentum and energy within the cell was enforced by correcting the velocities after the collisional 
scattering of test particles during a single time step.

As in Ref. [25], the approach of the present paper is also based on the (well known [30]) Monte Carlo model of colli-
sional scattering by a Maxwellian background, but the momentum and energy conservation laws are enforced differently. 
In contrast to Ref. [25], parameters (temperature and fluid velocity) of the background Maxwellian are computed without 
averaging over the ensemble of test particles but evolve in time together with the test particle parameters in accordance 
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