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Gaussian process emulator with separable covariance function has been utilized extensively 
in modeling large computer model outputs. The assumption of separability imposes 
constraints on the emulator and may negatively affect its performance in some applications 
where separability may not hold. We propose a multi-output Gaussian process emulator 
with a nonseparable auto-covariance function to avoid limitations of using separable 
emulators. In addition, to facilitate the computation of nonseparable emulator, we 
introduce a new computational method, referred to as the Full-Scale approximation 
method with block modulating function (FSA-Block) approach. The FSA-Block is an effective 
and accurate covariance approximation method to reduce computations for Gaussian 
process models, which applies to both nonseparable and partially separable covariance 
models. We illustrate the effectiveness of our method through simulation studies and 
compare it with emulators with separable covariances. We also apply our method to a 
real computer code of the carbon capture system.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The computer model plays a crucial role in scientific research for studying behaviors of complex systems through com-
puter experiments. In the context of Uncertainty Quantification (UQ), a key question of interest is to examine how computer 
model outputs change with different configurations of input parameters controlling physical variables, initial or boundary 
conditions, and so on. Although a computer model with a fine resolution is desired since it often produces more accurate 
simulations, it can be computationally prohibitive to produce a large number of fine resolution simulation runs at differ-
ent input values. This motivates the use of computationally inexpensive surrogate models to facilitate learning of response 
surface.

Gaussian process models were first used in [1] and [2] for building surrogate models for computer experiments. Oakley 
and O’Hagan [3] later applied Gaussian process emulators for uncertainty quantification under the Bayesian framework. 
Covariance function is a key ingredient in such models since it determines the dependence structure of the Gaussian process. 
In the context of Gaussian process emulators, the most widely used auto-covariance function is usually stationary and 
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separable in each input dimension; the cross-covariance among outputs is also assumed to be separable from dependence 
in other dimensions for mathematical tractability. For example, [4] proposed a stationary multi-output Gaussian process 
emulator based on separable cross-covariance. Also based on separable cross-covariance, [5] generalized the work in [4] and 
[6] to a Bayesian Treed multivariate Gaussian process model, accounting for both the nonstationarity and the multivariate 
features of the data. Based on separable covariance models and an adaptive algorithm for partitioning the stochastic space, 
the multivariate local Gaussian process emulator [7] also provides an effective tool to model large nonstationary datasets.

The assumption of separability allows fitting Gaussian process model in each input dimension separately. It leads to a 
separable covariance structure of covariance function and hence alleviates the computational demand by reducing the di-
mension of the covariance matrices to be inverted. One such example is in [8], where the authors introduced a multi-output 
separable Gaussian process model assuming the auto-covariance function of each output is separable in input, space and 
time. Then by making use of the properties of Kronecker product, the inverse of the covariance matrix of one output can 
be decomposed into the Kronecker product of inverses of an input covariance, a purely spatial covariance, and a purely 
temporal covariance, all of which typically have reduced dimensions so that data likelihood can be evaluated efficiently. 
Although the separable auto-covariance model has the aforementioned merits, it suffers from several limitations. First, it is 
lack of flexibility to allow for interactions between different types of correlations. [9] pointed out that if a stationary spatio-
temporal covariance function is separable, then the temporal dependence structure cannot vary spatially and the spatial 
dependence structure cannot vary temporally. However, in spatio-temporal statistics, the space–time interaction effect is of-
ten of particular interest. Such a limitation is also encountered by the separable emulator; the dependence structure of one 
input dimension is not allowed to change with other input dimensions. Second, the separable covariance function also has 
implications on conditional independence of outputs [10]. For instance, given a stationary bivariate Gaussian process f (· , ·)
with a separable covariance function, it can be shown that f (ξ, t) and f (ξ ′, t′) are independent given f (ξ, t′). A more 
comprehensive discussion of separable model can be found in [11].

Since the separable covariance may be restrictive in some cases, it is often desirable to consider a more general class of 
nonseparable auto-covariance models. In spatio-temporal statistics, much work have been done to construct flexible classes 
of nonseparable auto-covariance functions in space and time [9,12,13]. Typically the nonseparable space–time model has 
a parameter β ∈ [0, 1], referred to as the spatio-temporal interaction parameter, and the model reduces to be separable 
when β = 0. More sophisticated nonseparable covariance model of three or higher input dimensions can be constructed 
following the work by [14], where the authors extended methods in [12] to propose a nonseparable cross-covariance model 
for multivariate random fields. Motivated by this work in spatial statistics, we develop a flexible class of nonseparable 
auto-covariances for uncertainty quantification of computer models. In particular, this class of models includes separable 
models as special cases.

For computations, it is well known that the Gaussian process model scales badly with sample size n, requiring O(n3)

order of computations. Large sample size n typically makes the computations for the Gaussian process emulator prohibitive, 
unless some particular structures of the covariance functions are assumed, e.g. the separability. To overcome the computa-
tional bottleneck, we introduce the Full-Scale approximation (FSA) approach to reduce computations [15,16], which applies 
to both separable and nonseparable covariance structure. The FSA approach combines the merits of several popular ap-
proaches such as a reduced rank Gaussian process [17] and sparse covariance approximation [18] to provide a satisfactory 
approximation of the original covariance, under both large and small dependence scales of the data. Its computational com-
plexity is linear with n, reducing the computational cost significantly. [15] showed the effectiveness of using this method 
for model fitting and prediction in the spatial context. In this paper, we tailor this state-of-the-art computational tool and 
investigate its performance for the purpose of quantifying uncertainties of computer code outputs.

The major contributions of this paper have two folds: first we propose a flexible new class of nonseparable auto-
covariance functions for each computer output to model the interaction effect among input, space and time. This class 
of models relaxes the separability assumption that is typically made for Gaussian process emulators and provides a more 
flexible and general tool to describe dependence for computer model outputs. Second, we introduce the FSA approach in 
the uncertainty quantification context to provide efficient computations for nonseparable Gaussian process emulator. Since 
the FSA approach applies to any given covariance structure of a computer model output, it can also be combined with sep-
arable model to further reduce computational cost in the case when certain input dimensions have large sample sizes for 
simulation accuracy. In this paper, we illustrate our method assuming a stationary covariance function for each computer 
model output. We remark that our computational approach directly applies to nonstationary covariance functions as well.

The rest of this paper is organized as follows: in Section 2, we describe the multi-output Gaussian process model for 
computer code outputs; the discussions of nonseparable auto-covariance functions and the FSA approach are also given in 
Section 2. In Section 3, we describe Bayesian inference of model parameters and prediction. In Section 4, we compare the 
proposed nonseparable model with separable models through some simulation examples. In Section 5, we use our proposed 
method to analyze the computer code outputs of the regenerator device of a carbon capture unit. The potential extensions 
and some concluding remarks are given in Section 6.
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