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In this article, we revisit the adjoint consistency analysis of Discontinuous Galerkin 
discretizations of the compressible Euler and Navier–Stokes equations with application 
to the Reynolds-averaged Navier–Stokes and k–ω turbulence equations. Here, particular 
emphasis is laid on the discretization of wall boundary conditions. While previously only 
one specific combination of discretizations of wall boundary conditions and of aerodynamic 
force coefficients has been shown to give an adjoint consistent discretization, in this article 
we generalize this analysis and provide a discretization of the force coefficients for any
consistent discretization of wall boundary conditions. Furthermore, we demonstrate that 
a related evaluation of the cp- and cf-distributions is required. The freedom gained in 
choosing the discretization of boundary conditions without loosing adjoint consistency is 
used to devise a new adjoint consistent discretization including numerical fluxes on the 
wall boundary which is more robust than the adjoint consistent discretization known up 
to now.
While this work is presented in the framework of Discontinuous Galerkin discretizations, 
the insight gained is also applicable to (and thus valuable for) other discretization schemes. 
In particular, the discretization of integral quantities, like the drag, lift and moment 
coefficients, as well as the discretization of local quantities at the wall like surface 
pressure and skin friction should follow as closely as possible the discretization of the 
flow equations and boundary conditions at the wall boundary.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A discretization is adjoint consistent if the discrete adjoint problem is a consistent discretization of the continuous adjoint 
equations [1–3]. Adjoint consistency – in addition to consistency – is the key property of a discretization to be of optimal 
order in the L2-norm as well as measured in terms of target functionals [4–6]. Furthermore, discrete adjoint solutions to 
adjoint consistent discretizations are smooth whereas they might be irregular for adjoint inconsistent discretizations [2,3,
6–8].

While the adjoint consistency analysis has originally been developed for Discontinuous Galerkin (DG) discretizations of 
the linear advection equation, of Poisson’s equation and of compressible flow equations [1–3,6,7] it has been transferred 
and applied to a variety of other problems and/or other discretization schemes [9–17]. The general framework of the ad-
joint consistency analysis as provided in [3] can be employed to analyze adjoint consistency properties of discretizations as 
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well as to identify discretization terms due to which a discretization is adjoint inconsistent. In that case, the analysis helps 
to find modifications to the discretization to make it adjoint consistent. Having a Discontinuous Galerkin discretization at 
hand which is already adjoint consistent on interior faces (e.g., SIPG and BR2 discretizations for viscous terms are adjoint 
consistent, whereas NIPG is not [1]) the most critical issue is the discretization at boundary faces in combination with the 
discretization of target quantities like aerodynamic force coefficients. First ignoring viscous terms, for the DG discretiza-
tion of the compressible Euler equations, following combination of discretizations has been found in [2,3,7] to be adjoint 
consistent:

ĥ�(u+
h ,n) = n ·F c(u�(u+

h )), (1a)

Jh(u+
h ) = J (u�(u+

h )). (1b)

Here, u+
h denotes the interior trace of the discrete state vector in conservative variables of an element near the wall bound-

ary. As DG discretizations incorporate boundary conditions in a weak sense, u+
h does in general not satisfy the slip wall (i.e., 

vanishing normal velocity) boundary condition. In contrast to that, u�(u+
h ) is computed from u+

h by removing its normal 
velocity component and thus represents a wall boundary state with vanishing normal velocity. Furthermore, the particular 
example of a numerical boundary flux ĥ�(u+

h , n) provided in (1a) is given by the normal component n ·F c of the convective 
flux of the compressible Euler equations evaluated at the wall boundary state u�(u+

h ), and Jh(u+
h ) = J (u�(u+

h )) in (1b) rep-
resents a (consistent) discretization of the drag or lift coefficient given by J (u) = ∫

�W
p(u) n · ψ ds (cf. Section 2.2 for more 

details) again evaluated at the wall boundary state. Restricted to the compressible Euler equations the main outcome of [2,3]
was that a discretization including the normal boundary flux (1a) is adjoint consistent if and only if the force coefficient is 
evaluated based on (1b). In contrast to that, (1a) in combination with J (u+

h ) would be adjoint inconsistent.

ĥ� in (1a) is one of many different possible choices of numerical boundary fluxes. In fact, for the consistency of the 
discretization at the boundary it is only required that ĥ�(u+

h , n) is consistent, i.e., that it reduces to the normal convective 
flux, ĥ�(u, n) = n ·F c(u), if evaluated for the exact solution u. Besides (1a) another quite prominent choice of a numerical 
boundary flux is given by

ĥ�(u+
h ,n) = ĥ(u+

h ,u�
�(u+

h ),n). (2)

Here, ĥ represents any (consistent) numerical flux function connecting the interior state u+
h and a derived state u�

�(u+
h ) �= u+

h
on the wall boundary. Here, typically the same numerical flux (e.g., the Roe flux [18] or the local Lax–Friedrichs flux, among 
many others) is employed like on interior faces. In contrast to the normal boundary flux (1a) the numerical flux function 
involved in (2) introduces some numerical dissipation at the boundary. This typically leads to an increased stability and ro-
bustness of the discretization scheme. In fact, our experience from numerical experiments is that DG discretizations with (2)
are in general more stable than with (1a). However, [2,3] showed that (2) in combination with any of the discretizations of 
the target quantity considered in [2,3] would be adjoint inconsistent. Therefore, since [2,3] we were restricted to use either 
the adjoint consistent thus more accurate but possibly less robust discretization based on (1a), or the adjoint inconsistent, 
less accurate but more robust discretization based on (2).

In this article, we now generalize the adjoint consistency analysis and provide a discretization of the force coefficients 
for any consistent discretization of wall boundary conditions. This will in future offer the possibility to choose one of the 
discretizations based on (1a), or (2), or any other consistent discretization on the wall boundary and still obtain adjoint 
consistency if the discretization of the force coefficients is chosen accordingly. In particular, in Sections 2 and 3, we consider 
the compressible Euler and Navier–Stokes equations, together with the associated (continuous) adjoint equations. We derive 
DG discretizations of them in the most general form and analyze them with respect to consistency and adjoint consistency. 
In particular, here we introduce discretizations of the aerodynamic force coefficients which result in adjoint consistent 
discretizations for any consistent discretization of boundary conditions. Furthermore, in contrast to previous works, here the 
adjoint consistency analysis includes the treatment of farfield boundary conditions. Section 4 then extends the discretization 
to the Reynolds-averaged Navier–Stokes (RANS) and Wilcox k–ω turbulence equations.

Related to the evaluation (or discretization) of integral quantities like the force coefficients is the evaluation of local 
quantities at the wall boundary like surface pressure and skin friction as involved in the cp- and cf-distributions. The local 
cp-value is given by cp(u) = p(u)−p∞

0.5ρ∞ v2∞
, where p(u) denotes the pressure evaluated at the state u, and p∞ , ρ∞ and v∞ denote 

farfield quantities of the pressure, density and velocity, respectively. As an example, the blue and red lines in Fig. 1 show 
the cp-distributions evaluated based on cp(u�(u+

h )) for the L1T2 high-lift configuration (cf. Section 6.3 for more details), 
computed with a DG discretization based on the normal boundary flux in (1) and the numerical flux function (2). Due to 
the coarse resolution (coarse grid and low polynomial degree) both DG solutions show some discontinuities. However, most 
remarkable is the saw-tooth type cp-distribution (in red) obtained with the discretization based on (2). While cp(u�(u+

h ))

is connected to the adjoint consistent treatment of the force coefficient in (1b) and gives a relatively smooth cp-distribution 
(in blue) in Fig. 1, it is, however, clearly inappropriate for the evaluation of the cp-distribution for the discretization based 
on (2).

In this article, we extend the adjoint consistent treatment of the boundary conditions and force coefficients to an adjoint 
consistent evaluation of the cp- and cf-distributions. In particular, for any discretization of the wall boundary condition we 
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