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In this paper, we develop and demonstrate a method for constructing well-posed one-
way approximations of linear hyperbolic systems. We use a semi-discrete approach that 
allows the method to be applied to a wider class of problems than existing methods 
based on analytical factorization of idealized dispersion relations. After establishing the 
existence of an exact one-way equation for systems whose coefficients do not vary along 
the axis of integration, efficient approximations of the one-way operator are constructed by 
generalizing techniques previously used to create nonreflecting boundary conditions. When 
physically justified, the method can be applied to systems with slowly varying coefficients 
in the direction of integration. To demonstrate the accuracy and computational efficiency 
of the approach, the method is applied to model problems in acoustics and fluid dynamics 
via the linearized Euler equations; in particular we consider the scattering of sound waves 
from a vortex and the evolution of hydrodynamic wavepackets in a spatially evolving jet. 
The latter problem shows the potential of the method to offer a systematic, convergent 
alternative to ad hoc regularizations such as the parabolized stability equations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Many physical phenomena can be modeled by systems of linear hyperbolic partial differential equations. A defining 
characteristic of hyperbolic systems is that their solutions are comprised of waves that propagate at finite speeds. The 
well-posed solution of these equations on a finite computational domain takes the form of either an initial boundary value 
problem in the time domain or an elliptic boundary value problem if the equations are transformed into the frequency 
domain. In either case, incoming waves must be specified at the boundaries.

In some situations, the solution is dominated by waves that propagate in one direction. We call these waves rightgoing 
and the waves that propagate in the opposite direction leftgoing. Approximate one-way equations are often sought to 
represent the rightgoing waves. These one-way equations, also known as parabolized or parabolic equations, are valuable 
because they can be rapidly solved in the frequency domain by spatial integration in the direction of wave propagation. 
For the spatial march to be accurate and well-posed, the one-way equation must approximate the same rightgoing waves 
as the original hyperbolic equation but not support any leftgoing waves. If support for the leftgoing waves is not properly 
removed, decaying leftgoing waves are wrongly interpreted as growing downstream waves, causing instability in the spatial 
march.

One-way equations have been formally derived for various wave equations. Most one-way wave equations are derived 
by factoring the dispersion relation in Fourier–Laplace space. Two factors are obtained – one representing rightgoing waves 
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and one representing leftgoing waves. A one-way wave equation is obtained by only retaining the rightgoing branch. The 
resulting equation contains a square root involving the Fourier–Laplace variables, and the inverse transform of this term 
results in a nonlocal integro-differential equation. Computationally efficient one-way wave equations can be obtained by 
localizing the operator using rational approximations of the square root [1]. Early methods involved approximations at a 
fixed low order [2,3], while subsequent versions generalized this idea to arbitrarily high-order approximations. The accuracy 
and well-posedness of different approximations have been extensively studied [4,5]. One-way wave equations are routinely 
used to study geophysical migration [6,7] and underwater acoustics [8,9], and, when transformed back to the time domain, 
can be used as approximate nonreflecting boundary conditions [10,11].

These methods are very efficient and accurate for simple wave equations but degenerate quickly in more complicated 
situations because of their dependence on the factorization of the equations in Fourier–Laplace space, which, for example, 
is not possible for equations whose eigenvalues cannot be written down analytically. It is therefore not straightforward to 
apply these techniques to general hyperbolic systems. Guddati [12] developed a method for the acoustic and elastic wave 
equations that does not depend on this factorization. His method shares some qualitative similarities to the scheme we 
propose in this paper, but it has not been extended beyond wave equations.

The linearized Euler and Navier–Stokes equations can be spatially integrated using an ad hoc generalization of linear sta-
bility theory called the parabolized stability equations (PSE) [13]. PSE is designed to track the one-way spatial evolution of a 
single rightgoing wave, usually the most spatially amplified wave supported by the system. The wavelength and growth-rate 
of this wave are assumed to be slowly-varying. Instead of formally deriving a one-way operator, PSE achieves a stable spatial 
march by numerically damping all leftgoing waves, either by using an implicit axial discretization along with a restriction 
on the minimum step size [14] or by explicitly adding damping terms to the equations [15]. This damping prevents the 
leftgoing waves from destabilizing the spatial march, but also has the unintended consequence of damping and distorting, 
to differing degrees, all of the rightgoing waves.

PSE has been used extensively to study instability waves in slowly-spreading shear-flows. It is often the case that the 
near-field solutions of these equations are dominated by a single amplifying rightgoing wave related to classic instability 
modes of the Orr–Sommerfeld operator. This wave can be calculated very efficiently with reasonable accuracy using PSE. On 
the other hand, other rightgoing waves supported by the Euler equations, for example rightgoing acoustic waves, are not 
properly captured by PSE because of the aforementioned damping.

A number of other spatial marching methods have been developed for solving the Euler and Navier–Stokes equations that 
are collectively known as reduced or parabolized Navier–Stokes equations. After neglecting viscous terms in the paraboliza-
tion direction, leftgoing acoustic waves are eliminated by special treatment of the streamwise pressure gradient. A number 
of variations exist in which this term is treated differently, ranging from neglecting it partially [16] or entirely [17] to pre-
scribing it based on experimental data [17] or empirical approximations. Classical boundary layer equations fall into this 
category.

In this paper, we describe and demonstrate a new technique for developing accurate one-way approximations of linear 
hyperbolic systems. Our method formally removes support for leftgoing waves from the equations without analytically fac-
torizing the dispersion relation, resulting in well-posed equations that can be solved by spatial marching without the need 
for numerical damping. As a result, the rightgoing waves can be accurately captured for systems in which the leftgoing 
waves are unimportant. In Section 2, we first derive exact one-way equations based on concepts related to the well-
posedness of hyperbolic boundary value problems and then show how the exact equations can be efficiently approximated 
using techniques that were originally developed for generating high-order nonreflecting boundary conditions. The method 
is applied to the Euler equations in Section 3, and the accuracy and efficiency of the resulting one-way Euler equations is 
demonstrated in Section 4 using three example problems. Finally, we discuss possible improvements to the method and 
conclude the paper in Section 5.

2. Method

In this section, we formulate our parabolization method. First, we derive the spatial boundary value problem for a 
general hyperbolic system. Then, we derive an exact one-way equation for systems that are homogeneous along the axis 
of parabolization by identifying and eliminating leftgoing waves. The exact formulation is computationally expensive, so we 
next formulate efficient, well-posed approximations of the exact equations. We discuss the application of these methods to 
systems that vary along the axis of parabolization and finally compare the computational cost of the one-way equations to 
standard solution techniques.

2.1. Problem formulation

We begin with a system of linear, strongly hyperbolic partial differential equations

∂q

∂t
+ A (x, y)

∂q

∂x
+

d−1∑
j=1

B j (x, y)
∂q

∂ y j
+ C (x, y)q = 0. (1)
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