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In molecular biology it is of interest to simulate diffusion stochastically. In the mesoscopic 
model we partition a biological cell into unstructured subvolumes. In each subvolume 
the number of molecules is recorded at each time step and molecules can jump 
between neighboring subvolumes to model diffusion. The jump rates can be computed 
by discretizing the diffusion equation on that unstructured mesh. If the mesh is of poor 
quality, due to a complicated cell geometry, standard discretization methods can generate 
negative jump coefficients, which no longer allows the interpretation as the probability 
to jump between the subvolumes. We propose a method based on the mean first exit 
time of a molecule from a subvolume, which guarantees positive jump coefficients. Two 
approaches to exit times, a global and a local one, are presented and tested in simulations 
on meshes of different quality in two and three dimensions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In biochemical networks in cells, molecules diffuse in space and may react with other molecules when they are in the 
vicinity of each other. This process is often modeled by the reaction–diffusion equations, a system of deterministic partial 
differential equations (PDEs). This macroscopic model describes the evolution of the concentration of the molecules in time 
and space and is a good approximation for the behavior in the cell in the limit of large molecule numbers. However, many 
molecular species of interest in a biological cell, such as the DNA and transcription factors in gene regulation, are present 
only in very small copy numbers. The law of large numbers is no longer applicable and a deterministic equation for the 
concentration is inaccurate. We need to simulate the system in a stochastic manner as observed in experiments [1–6] or 
is justified theoretically [7,8]. Diffusion is then modeled as a random walk through space for the molecules and they react 
with each other with a certain probability when they meet.

One can distinguish at least two levels of modeling for such a random process. The first one is a discrete space, con-
tinuous time Markov process for the copy number of the molecules of the chemical species, called the mesoscopic model. 
Here the geometric domain is partitioned into compartments or voxels V in which the molecules are well mixed. The state 
of the system is the number of molecules of each species in each voxel. Molecules can then jump between adjacent voxels 
in diffusion or react with molecules within the same voxel. In a well stirred system, there is no space dependence and a 
trajectory of the system is generated by the Stochastic Simulation Algorithm (SSA) [9] or more efficient versions of it [10,11]. 
The algorithm was extended to problems with spatial variation on Cartesian meshes in [12] implemented in [13] and with 
curved boundaries in [14] and for unstructured meshes in [15] with software [16,17]. The second possibility is a continuous 
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space, continuous time Markov process at the more detailed microscopic level. Here each individual molecule is tracked and 
moves by Brownian motion. The molecules react with a certain probability if they are close to each other. Methods and 
software for this approach are found in [18–21].

In this paper we focus on the description of diffusion at the mesoscopic level. The purpose is to derive the jump coef-
ficients between adjacent voxels for unstructured meshes for simulation of stochastic diffusion by the SSA. Each voxel has 
a node and the nodes in the mesh are connected by a graph. The time between the jump events is assumed to be expo-
nentially distributed and the jump coefficients are the rates for the jumps from one voxel to the neighboring voxels. These 
coefficients are determined in [15] by a finite element method (FEM) for the Laplacian � and in [17] by a finite volume 
method (FVM). It follows from [22] that when the number of molecules in the system increases, the concentration of the 
species will converge to the solution of the diffusion equation discretized in space by FEM or FVM. The jump coefficients 
depend on the geometry of the mesh and have to be non-negative. For a mesh of poor quality, some of the rates generated 
by FEM may be negative. The rates generated by a standard FVM are always non-negative but the coefficients do not always 
define a consistent discretization of the Laplacian.

The jump rates λi j from Vi to a neighboring V j satisfy two conditions

1. λi j ≥ 0, 2.
∑
j, j �=i

λi j = λi, (1)

where λi is the total jump rate out of Vi . The corresponding approximation of �u in Vi on a mesh is then defined by the 
weights λi j for the solution values u j in the neighboring voxels V j and −λi for the value ui in Vi . The analytical solutions 
to the Laplace equation or the diffusion equation satisfy a maximum principle. A discrete numerical solution preserving this 
property satisfies a discrete maximum principle. The same conditions on the coefficients in a discretization of the Laplacian 
as for the jump rates in (1) are sufficient for the solution to fulfill the discrete maximum principle [23] and the scheme to 
be monotone. The construction of such maximum preserving and consistent FEM and FVM for unstructured meshes in 2D 
and 3D is the subject of a number of papers e.g. [24–29]. In order for the solution to satisfy the discrete maximum principle 
for Lagrangian FEM there are either geometrical restrictions on the mesh, such as non-obtuse angles, or the coefficients 
depend on the solution. Also for mixed FEM with Raviart–Thomas elements, the discrete maximum principle is not always 
satisfied [30]. In [31], non-negativity constraints are added in an optimization problem for a mixed FEM formulation to 
assure non-negative solutions of the diffusion equation. Defining a linear scheme for a general unstructured mesh fulfilling 
(1) with constant coefficients seems to be difficult. Also, to generate a mesh with the angle constraint fulfilled is difficult 
[32,33] even in 2D although some progress has been made [34].

We determine λi j using a different principle. We give up consistency with the Laplacian and replace it by another 
relation satisfied by diffusive molecules in order to guarantee that (1) is satisfied. If the consistent FEM discretization leads 
to negative λi j they are often small in absolute value on realistic meshes. The perturbation by using non-negative λi j instead 
is small and our new discretization is close to the original, consistent discretization. The first exit time of a molecule 
from a domain ω is the time when a molecule initially inside reaches the boundary ∂ω of the domain and is absorbed 
there [35–37]. Non-negative jump coefficients are derived from the probability distribution of that time. The principle is 
applied locally for the molecules to leave a node and globally for them to leave the computational domain �. In [38], we 
compare this approach with FEM, FVM, and the finite difference method (FDM) for Cartesian meshes. The first exit time has 
previously been used in computational methods in [19,21,39–41] to sample a particle’s exit time from its protective domain 
in particle based microscopic simulations.

In the next section, we explain in more detail the mesoscopic simulation algorithm intended for stochastic diffusion on 
lattices and the problems that are encountered on unstructured meshes. The coefficients are given by discretizations of the 
Laplacian. Then we present the theory of first exit times in Section 3 and how it can be used to calculate jump propensities. 
The numerical experiments with diffusive problems in two and three dimensions (2D and 3D) including chemical reactions 
are reported in Section 4. Finally, some conclusions are drawn.

Vectors and matrices are written in boldface. A vector u has the components ui and the elements of a matrix A are Aij . 
Vectors and matrices are measured in the Euclidean vector norm ‖u‖ and its subordinate spectral matrix norm ‖A‖.

2. Mesoscopic model for diffusion

In this section we derive the mesoscopic model for diffusion from a master equation, its mean value equations, and the 
discretization of the diffusion equation. The spatial domain � with boundary ∂� is partitioned into voxels Vi, i = 1, . . . , N , 
covering the whole domain � = ⋃N

i=1 Vi without overlap between them Vi
⋂

V j = ∅. Each voxel has a node xi inside the 
boundary ∂Vi with edges ei j in a graph connecting xi with the node x j in the adjacent V j , see Fig. 1(a). The length, area, or 
volume of Vi in 1D, 2D, or 3D, is V i . The copy number of chemical species Y in Vi is denoted by yi . A molecule can jump 
from Vi to a V j sharing a common part of the boundary ∂Vi j and an edge ei j .

2.1. The master equation

The probability density function (PDF) for a system with only diffusion satisfies a diffusion master equation (DME). The 
DME is a special case of the chemical master equation with linear reaction propensities [42, Ch. 8], [43, Ch. XIV]. The jump 
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