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a b s t r a c t

Some 1,3-PPE-based polyradicals with pendent phenoxy radicals whose repeating unit consisted of four
1,3-phenyleneethynylene units were synthesized via polymerization between monomers and trimeric
monomers in the presence of the Pd(PPh3)4 complex catalysts. The ESR spectra of the polyradicals in
dichloromethane showed unimodal broad signals. For the solid samples which were prepared from the
dichloromethane solution by evaporating the solvent and by drying in vacuo, the signal intensity
decreased with broadening of peak-to-peak line-width (DHpp). However, the ESR spectra almost recover
to the initial intensity and shapes due to redissolving in dichloromethane. In particular, the decrease of
doubly integrating the ESR signal (IESR) was more remarkable for the polyradical bearing galvinoxyl and
phenoxyl residues than others. This behavior suggests that strong antiferromagnetic interaction partially
arose for the polyradical.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Themagnetic properties of p-conjugated polyradicals are one of
the most attractive research fields about the new functional poly-
mermaterials [1e4]. Numerous p-conjugated polymers substituted
with pendent radicals have been synthesized and characterized
[5,6]. Ferromagnetic through-bond interaction between the
pendent spins was theoretically predicted for regioregular head-to-
tail p-conjugated macromolecules possessing conjugated pendent
radicals by using simple polyene models and other p-conjugated
polymers [7e9], and some of them actually exhibited the expected
ferromagnetic behavior through their p-conjugated backbone [10e
27]. However, the through-space magnetic interaction between the
polyradical chains has not been investigated well. Most of poly-
radicals consisted of one or two monomer species, and variety of
close packing between monomers was limited. Actually, their
magnetic properties between polyradical chains only exhibited
weak antiferromagnetic interaction. Sequential polymers have
repeating unit consisting of some kind of monomers, which would

lead to regulated close packing between monomers, and some
sequential polymers exhibited regulated higher order structure
[28e31]. Poly(phenyleneethynylene) (PPE) is one of the most
possible backbone structure for magnetic p-conjugated poly-
radicals and various PPE-based polyradicals have been investigated
[15,16,32e39]. PPE would be effective backbone structure for
alignment of polymer chain because the linear ethynylene nature
restricts flexibility of the conformation. Actually, some poly(1,3-
phenyleneethynylene) (1,3-PPE) derivatives formed helical struc-
ture [40e42] and extended-chain structure [42]. In this study, we
synthesized some 1,3-PPE-based polyradicals (1be3b) with
pendent phenoxy radicals whose repeating unit consisted of four
1,3-phenyleneethynylene units, and discussed their magnetic
interaction using ESR.

2. Experimental section

2.1. Materials

(3,5-Diiodophenyl)hydrogalvinoxyl (4) was synthesized ac-
cording to the literature procedures [39]. Tetrakis(-
triphenylphosphine)palladium (0) (Pd(PPh3)4) (Aldrich Co.) was
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used without further purification. Other conventional reagents
were used as-received or purified by conventional methods.

2.2. Synthesis of monomers and trimeric monomers

The monomers and trimeric monomers were synthesized as
shown in Schemes 1 and 2 based on the previously described
procedures [19,39,43,44].

2.2.1. Trimeric monomer 5
The crude product was purified by silica gel column separation

with chloroform/hexane (3/2 v/v) as an eluant to give the trimeric
monomer 5. 1H NMR (CDCl3, 400 MHz; ppm): d 7.70 (dd, 2H, J¼ 1.4,
1.3 Hz, ArH), 7.67 (t, 1H, J¼ 1.4 Hz, ArH), 7.66 (d, 2H, J¼ 1.4 Hz, ArH),
7.54 (ddd, 2H, J ¼ 7.8, 1.4, 1.4 Hz, ArH), 7.52 (s, 2H, PhH), 7.47 (ddd,
2H, J¼ 7.8, 1.4, 1.4 Hz, ArH), 7.33 (dd, 2H, J¼ 7.8, 7.8 Hz, ArH), 3.11 (s,

2H, C^CH), 2.38 (s, 3H, COCH3), 1.42 (s, 18H, C(CH3)3). 13C NMR
(CDCl3; ppm): d 171.55, 143.03, 142.22, 136.52, 135.19, 133.16,
132.03, 131.93, 130.40, 128.49, 125.34, 123.67, 123.32, 122.55, 89.23,
88.99, 83.11, 77.88, 35.63, 31.51, 22.69. IR (KBr pellet; cm�1): 3295
(nChCeH), 2968 (nCeH, t-Bu), 1761 (nC¼O).

2.2.2. Trimeric monomer 6
The crude product was purified by silica gel column separation

with ethyl acetate/hexane (1/5 v/v) as an eluant to give the trimeric
monomer 6. 1H NMR (CDCl3, 400 MHz; ppm): d 7.74 (dd, 2H, J¼ 1.4,
1.3 Hz, ArH), 7.65 (m, 3H, ArH), 7.54 (ddd, 2H, J ¼ 7.8, 1.4, 1.4 Hz,
ArH), 7.47 (ddd, 2H, J ¼ 7.8, 1.4, 1.4 Hz, ArH), 7.46 (s, 2H, PhH), 7.34
(dd, 2H, J ¼ 7.8, 7.8 Hz, ArH), 3.74 (s, 3H, OCH3), 3.11 (s, 2H, C^CH),
1.50 (s, 18H, C(CH3)3). 13C NMR (CDCl3; ppm): d 159.74, 144.20,
142.47, 135.18, 135.17, 133.67, 132.01, 131.92, 130.39, 130.22, 128.49,
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Scheme 1. Synthesis of monomer 4, trimeric monomers 5 and 6.
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