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a b s t r a c t

In the present review, we report the linear viscoelasticity of suspensions and polymers filled with nano-
size particles of different aspect ratios and structuration. The viscoelastic behaviour of liquid suspension
filled with well-dispersed and stabilised particles proves that the Brownian motion is the dominant
mechanism of relaxation. Accordingly, dilute and semi-dilute suspensions of stabilised carbon nanotubes,
cellulose whisker and PS nanofibres obey a universal diffusion process according to the DoieEdwards
theory. Regarding spherical particles, the KriegereDougherty equation is generally successfully used to
predict the zero shear viscosity of these suspensions. Regarding fractal fillers, two categories can
be considered: nanofillers such as fumed silica and carbon black due to their native structure; and
secondly exfoliated fillers such as organoclays, carbon nanotubes, graphite oxide and graphene. The
particular rheological behaviour of these suspensions arises from the presence of the network structure
(interparticle interaction), which leads to a drastic decrease in the percolation threshold at which the
zero shear viscosity diverges to infinity. Fractal exponents are then derived from scaling concepts and
related to the structure of the aggregate clusters. In the case of melt-filled polymers, the viscous forces
are obviously the dominant ones and the nanofillers are submitted to strong orientation under flow. It is
generally observed from linear viscoelastic measurements that the network structure is broken up under
flow and rebuilt upon the cessation of flow under static conditions (annealing or rest time experiments).
In the case of platelet nanocomposites (organoclays, graphite oxide), a two-step process of recovery is
generally reported: disorientation of the fillers followed by re-aggregation. Disorientation can be
assumed to be governed by the Brownian motion; however, other mechanisms are responsible for the re-
aggregation process.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The rheology of the suspensions started with the famous work
of Einstein in 1905 and 1911 on the prediction of the viscosity of
hard-sphere suspensions at low particle concentrations. In this
dilute regime, the hydrodynamic disturbance of the flow field
induced by the particles in the suspending liquid leads to an in-
crease in the energy dissipation and an increase in the relative
viscosity, hr, according to the equation (1):

hr ¼ h

hs
¼ 1þ 2:5f (1)

where h is the viscosity of the suspension, hs the viscosity of the
suspending liquid and f the volume fraction of particles. In fact, the

constant 2.5 is the intrinsic viscosity ð½h� ¼ lim
f/0

ðh� hs=fhsÞÞ, and
theoretically for rigid spheres [h] ¼ 2.5.

In the dilute regime of hard particles, the interparticle forces are
negligible compared with hydrodynamic forces and Brownian
diffusion. In other words, there are no attractions between the
particles but only an excluded volume effect. At higher concentra-
tions the probability of particle collisions increases so that the hy-
drodynamic interactions become the dominant ones. As a result the
Einstein law fails since a significant positive deviation of the rela-
tive viscosity is observed. Furthermore, a shear thinning behaviour
of the viscosity is observed with increasing volume fraction of
particles. There are numerous models available for the description
of the rheology of suspensions of spherical spheres, which is still an
open domain of theoretical investigations [1]. However, the semi-
empirical equation of Krieger and Dougherty [2] for mono-
dispersed suspensions is one of the most used and developed in
the literature. The concentration dependence of the zero shear
viscosity is expressed as:E-mail address: philippe.cassagnau@univ-lyon1.fr.
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h0 ¼ hs

�
1� f

fm

��½h�fm

(2)

Where fm is the maximum packing fraction of particles. At this
concentration, the zero shear viscosity rises to infinity and the
suspension exhibits a yield stress behaviour. The KriegereDough-
erty equation can be simplified to the Quemada equation [3] h0 ¼
hsð1� ðf=fmÞÞ�2 since it generally observed that [h]fm ¼ 2 in most
usual suspensions.

In model systems of monodispersed hard spheres, the critical
volume fraction (fm z 0.63) reported by Bicerano et al. [4] and
Smith and Zukoski [5] for the approach of the zero shear viscosity to
infinity is near the random close packing value of 0.64. The right
particle fraction atwhich the zero shear viscosity diverges to infinity
is still an open debate as most of the experimental results are far
below the theoretical packing value. The KriegereDoughertymodel
is generally used as a mathematical equation, where fm and [h] are
two fitting parameters, to numerically fit the concentration
dependenceof the zero shear viscosity. Togive aphysicalmeaning to
both parameters, a common way is to derive fm as an effective
maximum packing fraction fm,eff and [h] is related to the deviation
from ideal spheres in terms of aspect ratio of the particles. The value
of fm,eff is no more a universal value as it has to be determined for
each suspension. In fact, fm,eff includes deviation from ideal parti-
cles, as deformable spheres for example. On the other hand, aggre-
gate particles can be expressed from an effective volume fraction
feff. Regarding the particle aspect ratio, Barnes [6] proposed the
following formula for the intrinsic viscosity ½h� ¼ 0:07ðL=dÞ5=3 and
½h� ¼ 0:3ðL=dÞ for rod-like and disc-like particles respectively (L:
longest length and d ¼ diameter or thickness respectively). Even
without any physicalmeaning, the KriegereDougherty equation is a
useful tool to visualise at a glance the rheological trend of suspen-
sions. In some cases (latex for example), it is of importance for useful
development from the point view of process-engineering applica-
tions to have the lowest viscosity for the highest solid content. From
equation (2) and keeping constant the viscosity of the suspending
liquid, the only way is to increase the packing fraction fm. This is
generally achieved by using a bi-modal distribution of particles [7].
In contrast, in some applications like suspensions filled with
conductive fillers, the lowest percolation threshold is required in
terms of formulation costs and weight saving. The Kriegere
Dougherty equation shows that particles with high aspect ratio (an
increase of [h] and/or with aggregation (feff > f) including fractal
particles) are required for such applications. Consequently, the
physic of suspensions and its extension to molten filled polymers is
extremely complicated as the simple case of inert and rigid spheres
at low concentration is generally far from real life. The suspensions
and filled polymers are the world of colloidal particles as they offer
many possibilities of material developments. In the colloidal size
domain, the Brownian forces, direct interparticle forces and viscous
hydrodynamic forces are all of comparable magnitude. In some
cases, the particleeparticle interactions play a dominant role in
these systems and results in aggregation or flocculation with
possible fractal organisation of such clusters. In fact, the balance of
the different interaction can be tuned from a judicious chemical
modification of the filler surface and then open a marvellous world
for the control of the target rheological behaviours. Therefore, the
rheology of colloidal dispersions exhibits a rare diversity and has
been the subject of several publications and reviews. The last one of
greatest and practical interest was published by Genovese [8]. This
paper reviews the shear rheology of suspensions and matrix poly-
mers filled with microscopic and colloid particles. The shear
rheology of the suspensions has been discussed from the Kriegere
Dougherty equation as it is well known, with some simple modifi-
cations taking into account the deviation from ideal cases, to

effectively predict the concentration dependence of many types of
suspensions. In the case of aggregated suspensions, the authors
demonstrated the analogy between several theoretical models
devoted to yield stress and elastic modulus of these gels.

If the shear rheology (steady shear flow experiments) is well
described in the literature for suspensions, the linear viscoelas-
ticity under oscillatory measurements is more limited in terms of
publications. However, the linear viscoelasticity has been
extremely used to characterise the viscoelastic properties of
polymer melts filled with nano-sized fillers (nanocomposites). A
direct consequence of filler incorporation in molten polymers is
the significant change in viscoelastic behaviour as they are sen-
sitive to the structure, concentration, particle size, shape (aspect
ratio) and surface modification of the fillers. As a result, rheolog-
ical methods are useful and suitable to assess the quality of filler
dispersion [9]. In recent years, nearly all types of nano-fillers have
been used for the preparation of nanocomposites: organoclays,
carbon black, fumed and colloid silica, carbon nanotubes, cellulose
whiskers, metallic oxide, etc. and more recently graphite oxide
and graphene. From a literature survey, thousands of papers and
reviews have been published in this broad scientific area and
consequently we can only cite the most recent reviews [10e14].
From a physical point of view, nanoparticles in suspending fluid
are submitted to particleeparticle forces, particleefluid in-
teractions, viscous forces under flow and finally Brownian forces.
The Brownian motion arises from thermal randomising forces that
lead to the dispersion of the nanoparticles. Consequently, Brow-
nian motion is ever present even in highly viscous systems
(entangled polymer melts). The aim of the present paper is to
review some linear viscoelastic behaviours of suspensions and
molten polymer filled with nanoparticles of different aspect ratios
such as spheres, platelets and nanotubes (or nanofibres). Actually,
the viscoelastic and dynamic behaviours have been discussed for
each system taking into account the dispersion at different scales
of nanoparticles as it was reported in the corresponding papers.
Finally, this review is addressed in terms of a comprehensive study
of the viscoelastic behaviour and modelling from the Brownian
diffusion of nanoparticles.

2. Particle diffusivity

In the dilute regime of suspensions, the particles can rotate
about their centre of mass. The particles are then able to rotate
freely without any interference interactionwith neighbouring ones.
The particle diffusivity in this dilute regime is controlled by the
Brownian forces (wkBT, kB is the Boltzmann constant) in the sus-
pending liquid (viscosity hs), which exerts the Stokes friction
(w6phsR) on the particle (radius of the particle R) and is written as:

D0 ¼ kBT
6phsR

�
m2s�1

�
(3)

This equation is also known as the StokeseEinstein law. The
rotary particle diffusivity (Unity: s�1) has been derived for non-
spherical particles as following [15]:

Particles of nearly spherical shape (diameter d):

Dr0 ¼ kBT
phsd3

(4)

Spheroid particles of the longest length L:

Dr0 ¼
3kBT

�
ln
�
2 L
d

�
� 0:5

�
phsL3

(5)

Platelet or circular disc-like particle of diameter d:
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