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Inverse boundary value problems for the radiative transport equation play an important 
role in optics-based medical imaging techniques such as diffuse optical tomography 
(DOT) and fluorescence optical tomography (FOT). Despite the rapid progress in the 
mathematical theory and numerical computation of these inverse problems in recent years, 
developing robust and efficient reconstruction algorithms remains a challenging task and 
an active research topic. We propose here a robust reconstruction method that is based 
on subspace minimization techniques. The method splits the unknown transport solution 
(or a functional of it) into low-frequency and high-frequency components, and uses 
singular value decomposition to analytically recover part of low-frequency information. 
Minimization is then applied to recover part of the high-frequency components of the 
unknowns. We present some numerical simulations with synthetic data to demonstrate 
the performance of the proposed algorithm.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The mathematical and computational study of inverse coefficient problems to the radiative transport equations has at-
tracted extensive attention in recent years; see for instance the reviews [8,62–64,68] and references therein. The main 
objective of these inverse problems is to reconstruct physical parameters in the radiative transport equation from par-
tial information on the solution to the equation. These inverse problems have important applications in many areas of 
science and engineering, such as ocean, atmospheric and interstellar optics [14,11,24,32,59,65,74,84], radiation therapy plan-
ning [3,16,38,43,60,73,80,82], diffuse optical tomography and quantitative photoacoustic tomography [1,3–5,12,20,29,35,39,
40,50–52,55,61,70–72,76–79,85], molecular imaging [12,36,37,49,54,75] and many more [15,6,7,13,15,21–23,26,27,30,44–47,
52,56,67,74,81,83,84,86].

We consider here the application of inverse transport problems in biomedical optical imaging techniques such as diffuse 
optical tomography (DOT) [1,3–5,12,20,29,35,39,40,52,70–72] and fluorescence optical tomography (FOT) [12,36,37,54] where 
radiative transport equations are often employed as the model for light propagation in biological tissues. To setup the 
problem, let us denote by Ω ⊂ R

d (d ≥ 2) the tissue of interest, with sufficiently regular surface ∂Ω . We denote by Sd−1

the unit sphere in Rd , and v ∈ S
d−1 the unit vector on the sphere. We denote by X ≡ Ω × S

d−1 the phase space and define 
the boundary sets of the phase space, Γ± , as

Γ± = {
(x,v) ∈ ∂Ω × S

d−1 s.t. ± v · n(x) > 0
}
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with n(x) the unit outer normal vector at x ∈ ∂Ω . The radiative transport equation for the phase-space density distribution 
of the photons in the tissue can be written as

v · ∇u(x,v) + σa(x)u(x,v) = σs(x)Ku(x,v) in X

u(x,v) = f (x) on Γ−, (1)

where u(x, v) is the density of photons at x ∈ Ω traveling in direction v, and f is the light source. The positive functions 
σa(x) and σs(x) are the absorption coefficient and the scattering coefficient respectively. The total absorption coefficient is 
given by σ(x) ≡ σa(x) + σs(x). The scattering operator K is given by

Ku(x,v) =
∫

Sd−1

k
(
v,v′)u

(
x,v′)dv′ − u(x,v) (2)

where the scattering kernel k(v, v′) describes the probability that photons traveling in direction v′ get scattered into direc-
tion v. Note that to conserve the total mass, we have normalized the surface measure dv on Sd−1 and the scattering kernel 
k(v, v′) such that∫

Sd−1

dv = 1, and
∫

Sd−1

k
(
v,v′)dv′ = 1, ∀v ∈ S

d−1. (3)

In biomedical optics, the scattering kernel is often taken as the Henyey–Greenstein phase function [42]:

k
(
v,v′) ≡ kg

(
v · v′) = Π

1 − g2

(1 + g2 − 2gv · v′)d/2
, (4)

which is a one-parameter function that depends only on the angle between the two directions v and v′ for a given 
anisotropy factor g ∈ [−1, 1]. The normalization constant Π is determined by the normalization condition (3).

The function f (x) models the illumination source used in imaging experiments. In practical application of biomedical 
imaging, for instance in DOT and FOT, it is often technically difficult to construct angularly-resolved illumination sources. 
This is the main reason for us to employ an isotropic source function (referring to the fact that f (x) does not depend on the 
angular variable v) in the transport model (1). The measured data in biomedical optical imaging is usually a functional of 
the solution to the transport equation. Once again, due to the fact that it is difficult to measure angularly-resolved quantities, 
angularly-averaged quantities are usually measured. Here we consider applications (for instance DOT and FOT) where the 
measurement is the photon current on the surface of the tissue. The current is defined as

j(x) ≡ Mu(x) =
∫

{v∈Sd−1: v·n(x)>0}
v · n(x)u(x,v)|Γ+dv, x ∈ ∂Ω. (5)

The objective of the biomedical imaging problems here is to reconstruct the optical absorption and scattering coefficients of 
biological tissues, σa and σs from data encoded in the albedo operator:

Λσa,σs
: f (x) 
→ j(x) (6)

There are two major issues with diffuse optical imaging. The first issue is its low resolution due to the multiple scattering 
of light in tissues. Mathematically, this is manifested as the instability of the inverse transport problem [8,9]. By instability 
we mean that the noise in the data are significantly amplified in the inversion process, assuming that the problem admits 
a unique solution to start with. To stabilize the inverse problem, one can incorporate additional a priori information into 
the computational inversion algorithms. Commonly-used a priori information including, for instance, the smoothness or 
non-smoothness of the unknown [36,37,41] and the shape of the regions of interests [5,29]. The second issue with diffuse 
optical tomography is that there is no analytical inversion formulas for the image reconstruction problem, even in very 
academic geometrical configuration [72]. Computational reconstruction algorithms based on the radiative transport model 
are in general extremely slow. Fast reconstruction algorithms are actively sought by researchers in the field.

The instability of the inverse transport problems implies that when there is no available a priori information, only low-
frequency components of the unknowns can be reconstructed stably. One should thus not spend too much efforts trying 
to reconstruct high-frequency components of the unknowns. Based on this observation and the idea of subspace mini-
mization [25,66,87], we propose here a fast computational reconstruction method for the aforementioned inverse transport 
problems. Our method relies on the fact that we can explicitly factorize out some unstable components of the albedo 
operator Λσa,σs

defined in (6). The unstable components of the albedo operator then impose a natural limit on the highest-
frequency components of the unknown that can be reconstructed stably from the data. The factorization of Λσa ,σs

is not 
unique in general. For our purpose, we follow the ideas in [25,66,87] to reformulate the transport problem into the form

j = Au, (7)

u = Bu− f, (8)
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