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In this note we demonstrate that using Anderson Acceleration (AA) in place of a standard 
Picard iteration can not only increase the convergence rate but also make the iteration 
more robust for two transport applications. We also compare the convergence acceleration 
provided by AA to that provided by moment-based acceleration methods. Additionally, 
we demonstrate that those two acceleration methods can be used together in a nested 
fashion. We begin by describing the AA algorithm. At this point, we will describe two 
application problems, one from neutronics and one from plasma physics, on which we 
will apply AA. We provide computational results which highlight the benefits of using AA, 
namely that we can compute solutions using fewer function evaluations, larger time-steps, 
and achieve a more robust iteration.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Originally conceived in 1965, Anderson Acceleration (AA) was designed to accelerate iterative methods for solving nonlin-
ear integral equations [1]. Recent work by Toth and Kelley [4] and Calef [5] has demonstrated the effectiveness of Anderson 
Acceleration, or the closely related Nonlinear Krylov Acceleration (NKA). Similarly, the authors of [6] have shown that AA 
can provide an algorithmic speed-up when coupling fluid and solid heat-transfer problems. Others have shown that AA is 
closely related to unrestarted GMRES, which requires only finite storage [7,8]. In Ref. [4], Toth and Kelley have developed 
some of the first convergence theory for nonlinear problems. These results suggest that for appropriate problems, AA can 
yield computational improvements over a standard Picard Iteration.1

In the past, we have utilized moment-based acceleration (MBA) techniques to accelerate the standard Picard iteration for 
a variety of transport problems [10,13,14]. These MBA techniques yield the same high-quality solution as the unaccelerated 
iteration, however at a small fraction of the original cost. We propose AA, not as a replacement to MBA technique, but as 
an additional level of acceleration to enhance the performance of the MBAs. In the context of neutron transport we use an 
MBA method often referred to as nonlinear diffusion acceleration (NDA) [10], while in the context of plasma physics we 
will use an algorithm called moment-accelerated Vlasov–Ampère (MAVA) [13]. These techniques are very similar in nature 
and both yield accurate, consistent solutions for a reduced computational cost.

In this work, we will give a brief overview of the Anderson Acceleration algorithm and describe how it can be used to 
aid in the solution of the fixed-source neutron transport equation and the Vlasov–Ampère equations. We also review the 
moment-based acceleration methods for both application areas. For the fixed-source neutron transport equation, we will 

1 Anderson Acceleration, as described in [1], is closely related to nonlinear GMRES, introduced later in both [2] and [3].
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demonstrate that Anderson Acceleration can achieve faster convergence than Picard iteration and may allow convergence in 
some cases where a standard Picard iteration does not converge. We also show that the moment-based acceleration method 
can be much more efficient, but also potentially less robust, as compared to an unaccelerated solution technique. Finally, 
we show that the combination of the two acceleration methods results in the best combination of efficiency and robustness. 
Within the plasma physics domain, we find that AA allows us to take larger time-steps, in addition to faster convergence of 
each time-step solution and again we find that an MBA technique in conjunction with AA is the most efficient combination.

2. Anderson Acceleration

Suppose we wish to compute the nonlinear fixed-point,

x∗ = G
(
x∗). (1)

If G is a contraction mapping in a neighborhood of the solution and x0 is some initial approximation to x∗ within that neigh-
borhood, then the iteration produced via successive substitution will converge, potentially very slowly, to the solution [9]. 
We define this successive substitution, or Picard Iteration, formally in Algorithm 1.

Algorithm 1 (PI).
Picard Iteration

Input function G , initial iterate x0, convergence tolerance τ
Set z = 0.
while ‖xz+1 − xz‖ > τ do

Set xz+1 = G(xz)

Increment z = z + 1.
end while

It is important to note that this nonlinear iteration is guaranteed to converge only when G is a contraction mapping. Fur-
thermore, this iteration may converge unacceptably slowly to the solution. Several other approaches have been considered 
for this problem including recasting the problem as a nonlinear equation F (x) = 0. In this case, one can use a Newton-based 
method to potentially achieve quadratic convergence. In this paper, we will leave the problem in its original fixed-point form 
and apply either an MBA method or Anderson Acceleration to improve convergence. Anderson Acceleration applies an up-
date formula at each iteration which takes into account a (generally) limited history of old residuals. We describe Anderson 
Acceleration (as presented in [7]) in Algorithm 2.

Algorithm 2 (AA).
Anderson Acceleration(m)

Given x0 and m ≥ 1.
Compute x1 = G(x0).
for z = 1, 2, ... do

Set mz = min{m, z}.
Set F z = ( fk−mz , ..., f z), where f i = G(xi) − xi .

Compute α(z) = (α
(z)
0 , ..., α(z)

mz )
T where

α(z) = arg min
α

‖F zα‖2 s.t.
mz∑
i=0

αi = 1 (2)

Set xz+1 = ∑mz
i=0 α

(z)
i G(xz−mz+i)

end for

We see that we must solve a constrained minimization problem at each iteration. In most references, the minimization 
in Eq. (2) is recast as an unconstrained minimization problem. We generally keep the number of vectors, m, in the Anderson 
history small so as to ensure we have sufficient storage and so as to make the optimization problem less ill-conditioned. 
From here we seek to demonstrate applications of the Anderson Acceleration algorithm (see [8,7,4]) and we leave the reader 
to explore any additional theory independently.

3. Neutron transport

In this section we are interested in solving the neutron transport equation with isotropic scattering. This equation is 
given by

Ω̂ · ∇ψ(�r, Ω̂) + Σtψ(�r, Ω̂) = 1

4π

[
Σsφ(�r) + q(�r)], (3)
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