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a b s t r a c t

This paper deals with the calorimetric analysis of deformation processes in natural rubber. Infrared
thermography is first used to measure the temperature evolution of specimens under quasi-static uni-
axial loading at ambient temperature (see Part 1). Then the heat sources produced or absorbed by the
material due to deformation processes are deduced from the temperature variations by using the heat
diffusion equation. Different main results are obtained from cyclic and relaxation tests. First, no me-
chanical dissipation (intrinsic dissipation) is detected during the material deformation. Second, strain-
induced crystallization leads to significant heat production, whereas the melting of crystallites absorbs
the same heat quantity with different kinetics. This difference in kinetics explains the mechanical
hysteresis. Finally, relaxation tests show that crystallite melting does not systematically occur
instantaneously.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The physical mechanisms involved in the deformation of natural
rubber are numerous and are still the object of keen scientific
debate, among them viscosity, strain-induced crystallization and
crystallite melting, cavitation and energetic and entropic effects on
the thermomechanical response. To investigate these physical
deformation processes, several experimental techniques have been
used, including X-ray diffraction [1e3], X-ray microtomography [4],
dilatometry [5,6] and classic mechanical tests such as stress relax-
ation and cyclic tests. Any deformation process induces heat pro-
duction or absorption that can be detectable or analyzable with the
abovementioned techniques. For this purpose, infrared (IR) ther-
mography seems to be an appropriate technique to detect heat
sources from measured temperature variations. Indeed, IR ther-
mography has proved over the last twenty years to be a relevant
technique to provide information of importance on the deformation
processes in materials such as steels, aluminium alloys and com-
posites. Moreover, various studies previously carried out by Chrys-
ochoos and co-workers [7] have shown that heat sources produced

by the material itself were more relevant than temperatures when
analyzing various phenomena such as Lüders bands [8], fatigue [9]
or strain localization [10]. The main reason is that the temperature
field is influenced by heat conduction as well as heat exchanges
with the ambient air and the grips of the testing machine used.

In rubbery materials, which undergo large deformations, only
two studies have recently been carried out to develop motion
compensation techniques in the case of heterogeneous tests [11,12].
These studies focused on the numerical post-treatment of tem-
perature fields, and were not dedicated to the analysis of the
deformation processes. The present paper aims therefore at
applying quantitative calorimetry to characterize and to analyze
the thermomechanical behaviour of natural rubber under homo-
geneous uniaxial tensile tests, at ambient temperature. More
particularly, the paper focuses on the calorimetric effects accom-
panying stress-induced crystallization and crystallite melting,
which offers a new route to study such phenomena and their
kinetics [13e15].

The first section describes the thermomechanical framework
used to assess heat sources from temperature fields measured at
the specimen surface. The second section describes the experi-
mental setup, in terms of the material used, loading conditions and
IR measurement technique. The third section presents the results
obtained and discussion on the deformation processes.
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2. Thermomechanical framework

Temperature fields measured at the flat surface of a specimen by
an IR camera are 2D, i.e. bidimensional. As the tests performed are
assumed to be homogeneous in terms of strain and stress, the fact
that rubbers have a very low thermal diffusivity leads to nearly
homogeneous temperature fields. So a ‘0D’ approach can be
developed. This approach is detailed below.

Let us start from the 3D formulation of the heat diffusion
equation. In a thermomechanical framework [16], the local state
axiom is assumed [17]. Any thermodynamic system out of equi-
librium is considered as the sum of several homogeneous sub-
systems at equilibrium. The thermodynamic process is considered
as a quasi-static phenomenon.

The state of any material volume element is defined by N state
variables: temperature T, a strain tensor denoted E and internal
variables V1, V2,.,VN�2 which can correspond to plastic strain or
volume fractions of some phases. The specific free energy potential
is denoted J(T,E,Vk), k(1, 2,.,N � 2). Considering the first and
second principles of thermodynamics and assuming Fourier’s law
to model heat conduction, the heat diffusion equation is written:

rCE;Vk
_T � divðK gradTÞ � r ¼ d1 þ rT

v2J

vTvE
_Eþ rT

v2J

vTvVk

_Vk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s

(1)

where r is the density, CE;Vk
is the specific heat at constant E and Vk,

K is the thermal conductivity tensor and r is the external heat
source (e.g. by radiation). The right-hand side of equation (1) rep-
resents the heat sources s produced by the material itself. It can be
divided into two terms that differ in nature:

� mechanical dissipation d1 (or intrinsic dissipation): this positive
quantity corresponds to the heat production due to the me-
chanical irreversibilities during any mechanical process;

� thermomechanical couplings: these correspond to the couplings
between the temperature and the other state variables.

This equation applies both in reference configuration as well as in
current configuration, provided that we give the suitable definition
of symbols r, div, K, grad and s. However, only in lagrangian variables
the total derivative _T can be calculated as a partial derivative.

2.1. Usual assumptions to calculate heat sources

The approach classically used to assess heat sources from the
temperature fields obtained by an IR camera [18,19] is shortly
described in this section.

By using thin specimens, the problem can be considered as
bidimensional. At a given point (x,y) on the surface, the tempera-
ture is thus nearly homogeneous through the thickness. In fact, a
small temperature gradient exists close to the specimen faces due
to the heat exchange by convection with the air, but the surface
temperature can be considered as very close to the mean temper-
ature in the thickness. Then, by integrating the heat diffusion
equation (1) over the specimen thickness [20] and defining the
mean thermal disequilibrium through the thickness between the
specimen and its surroundings by q(x,y) the following bidimen-
sional formulation of the heat diffusion equation is obtained:

rCE;Vk

�
_qþ q

s2D

�
� div2DðK2Dgrad2DqÞ ¼ s (2)

where div2D, K2D and grad2D are the restrictions of div, K and grad to
the (x,y) plane, respectively. s2D is a time constant characterizing

the heat exchanges by convection with the air at the specimen
surface. It is assumed to be the same at any point (x,y) of the
specimen. It can be defined as follows (see Ref. [20]):

s2D ¼ erCE;Vk

2h
(3)

where e is the specimen thickness and h a convection coefficient. In
practice, the constant s2D is experimentally assessed by identifica-
tion from a simple test of natural return to room temperature.

Considering that the stress state is everywhere plane, it can be
shown by explicit calculation that the expression (3) applies
whatever the configuration considered, as it should after the
remark preceding. Indeed, going from reference to the current

configuration, we have e/elz; /rJ�1; h/h=ðJ
ffiffiffiffiffiffiffiffiffi
C�1
zz

q
Þ ¼ J�1lzh,

so that the combination er/h remains unchanged.
The 2D equation (2) can be reduced to a “0D” formulation in the

case of heat source fields which are homogeneous in the specimen
[21]. In the present study, this approach is relevant because the
tests are assumed to be homogeneous in terms of strain and stress.
Moreover, rubbers have a very low thermal diffusivity, which leads
to nearly homogeneous temperature fields. In such a case, the heat
diffusion equation can be rewritten [21]:

rCE;Vk

�
_qþ q

s

�
¼ s (4)

where s (¼s0D z s2D) is a time constant characterizing the heat
exchanges between the specimen and its environment, i.e. the
ambient air and the jaws of the testingmachine. It can be noted that
s must be measured for each testing configuration (material,
specimen geometry, environment in terms of ambient air and jaws
of the testing machine).

Some comments can be added concerning tests that are per-
formed on rubber materials. Because of large displacements, the
convection conditions with the ambient air depend on the velocity
of the material point. Moreover, large deformations lead to a vari-
ation in the specimen thickness, leading also to a change in the
value of s (see equation (3)). Thus the situation is much more
complex than with metallic materials subjected to small displace-
ments and deformations. The experimental procedure tomeasure q
is more precisely detailed in subsection (3.3).

Let us conclude with some considerations on units. The heat
source s is expressed in [W m�3]. However, it is generally useful to
divide this quantity by rCE;Vk

:

_qþ q

s
¼ s

rCE;Vk

(5)

The quantity s=rCE;Vk
is expressed in �C s�1 (corresponding to

the temperature rate that would be obtained in an adiabatic case).
In the rest of the paper, the term “heat source”will also be used for
this quantity s=rCE;Vk

.
Note finally that throughout the document, the term “heat”

must be distinguished from “heat source”. The heat is the temporal
integration of the heat sources. It is expressed in J m�3 (in �C when
divided by rCE;Vk

).

3. Experimental setup

3.1. Material and specimens

The material considered here is an unfilled natural rubber. Its
formulation is given in the companion paper denoted Part 1 in the
following [22]. The specimen denoted NR in the following, was ob-
tained by sulphur vulcanization, and was cured for 22 min at 150 �C.
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