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Numerical solution of relativistic quantum optics problems requires high performance
computing due to the rapid oscillations in a relativistic wavefunction. Clusters of graphical
processing units are used to accelerate the computation of a time dependent relativistic
wavefunction in an arbitrary external potential. The stationary states in a Coulomb
potential and uniform magnetic field are determined analytically and numerically, so that
they can used as initial conditions in fully time dependent calculations. Relativistic energy
levels in extreme magnetic fields are recovered as a means of validation. The relativistic
ionization rate is computed for an ion illuminated by a laser field near the usual barrier
suppression threshold, and the ionizing wavefunction is displayed.

Published by Elsevier Inc.

1. Introduction

Tunneling ionization is usually described using the time dependent Schrödinger equation (TDSE). The TDSE is a strictly
non-relativistic equation. In contrast, the dynamics of a free particle become relativistic when the normalized vector po-
tential, a = e A/mc2, satisfies a � 1. For typical laser frequencies, this corresponds to an irradiance I ≈ 1018 W/cm2. Such
irradiances are achieved regularly in many laboratories. The corresponding fields are sufficient to strip nitrogen down to
the K-shell via barrier suppression. Irradiances of I > 1020 W/cm2 are not achieved as frequently, but are easily within the
reach of several ultra-high power laser systems around the world. It is expected that these irradiances are sufficient to fully
strip neon.

Although the dynamics of free electrons are relativistic for a � 1, the spectra of atoms that can be brought to a high
charge state by such a field are non-relativistic. Put another way, all the bound electrons in an atom that requires a � 1
to be fully stripped, are well described by Schrödinger theory. To see this, note that for a hydrogen-like ion, the barrier
suppression model [1] gives the threshold for ionization as

a = α

ωLτa

Z 3

16
(1)

where Z is the atomic number, ωL is the laser frequency, τa = h̄3/me4 is the atomic unit of time, and α = e2/h̄c is the
fine structure constant. Taking a = 1 and a laser wavelength λ = 0.8 μm (ωLτa = 0.057) gives Z = 5. Hence, boron is the
heaviest element that is fully stripped by a laser with λ = 0.8 μm and a = 1. The condition for an atomic spectrum to be
non-relativistic is Z � α−1 ≈ 137, as follows from elementary Dirac theory. One concludes that even though a = 1 leads to
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relativistic motion of free electrons, the bound electrons that are freed are non-relativistic. This observation can be useful
when formulating the initial conditions for a relativistic quantum optics problem.

The process of ionization involves the dynamics of both bound and free electrons. For a � 1 and Z � 137, the bound
electrons are quantum mechanical and non-relativistic, while the free electrons are relativistic and classical. If much heavier
elements are considered, even the bound electrons might have to be treated relativistically. Hence, a complete description
of the problem must be quantum mechanical and fully relativistic. In this paper we develop a numerical tool capable of
treating such problems.

The non-relativistic theory of photo-ionization was pioneered by L.V. Keldysh in 1965 [2]. Shortly thereafter, in the series
of papers by Perelemov et al. [3–6], it was brought into a form that has remained useful right up to the present day.
Numerical solution of the non-relativistic ionization problem has been tractable for some time, although new algorithms
are still being developed [7–9], including some that utilize graphical processing units [10–12]. Relativistic photo-ionization
has received less attention, although some analyses have been given [13–16]. Fully time dependent numerical solutions of
relativistic wave equations are only recently appearing in the literature [17–19].

2. Relativistic wave equations

The Dirac equation describes the motion of an electron in an external potential, such as the superposition of an atomic
binding potential and a laser field. Solution of the Dirac equation requires evolving a 4-component bi-spinor wavefunction.
However, as discussed in Ref. [20], the Dirac equation can be separated into 4 independent equations by neglecting terms
involving spin. This results in the Klein–Gordon equation[

(ı∂t + qΦ)2 − (ı∇ + qA)2 − m2]Ψ = 0 (2)

where q is the charge, m is the mass, Φ is the scalar potential, A is the vector potential, and Ψ is a complex scalar
wavefunction. Here, and in all that follows, natural units are employed, with energy normalized to the electron mass. Using
the Coulomb gauge, ∇ · A = 0, and assuming a static scalar potential,(

�2 − m2 + q2 Aμ Aμ
)
Ψ + 2ıq∂μ

(
AμΨ

) = 0 (3)

where �2 = ∇2 − ∂2
t , μ is a relativistic tensor index, and the metric signature is (+ − −−). Note that in the chosen gauge

∇ · (AΨ ) = A · ∇Ψ . The expression on the left is useful for finite volume differencing, while the one on the right is useful
for analysis.

Depending on the problem, various coordinate systems are used to solve Eq. (3). Consider Cartesian coordinates (x, y, z),
cylindrical coordinates (ρ,ϕ, z), and spherical coordinates (r, θ,ϕ). Cartoons of various wavefunctions are shown in Fig. 1.
Panels (a), (b), and (c) are for a central binding potential Φ(r), while (d), (e), and (f) are for a cylindrical binding potential
Φ(ρ). Naturally, the former case is a more realistic model of an atom or ion. Panels (a) and (d) show a bound state
wavefunction for which A = 0. In both geometries, two coordinates are ignorable. Panels (b) and (e) show an ionizing
wavefunction is the non-relativistic dipole approximation, where A = A(t) is a function of time only. The effect of the
vector potential is to stretch the wavefunction in the polarization direction. For a central potential, ϕ is ignorable, while
for a cylindrical potential z is ignorable. Panels (c) and (f) show an ionizing wavefunction in the relativistic case, where
the spatial dependence of A leads to a ponderomotive force that stretches the wavefunction in the direction of the photon
momentum, k. In this case, there is no coordinate that is ignorable for a central potential, but there is one that is ignorable
for a cylindrical potential. This is the reason for considering a cylindrical potential.

3. Stationary states

In the remainder of this paper, cylindrical atoms are considered. The stationary states are characterized by two quantum
numbers: the radial quantum number, nr ∈ {0,N}, and the magnetic quantum number, �z ∈ Z. A given stationary state is
denoted |nr, �z〉.

3.1. Coulomb potentials

The time independent form of Eq. (3) is obtained by making the substitution Ψ (r, t) → R(ρ, z)exp(ı�zϕ)exp(−ıωt).
Using ∂tΦ = 0, and specializing to the case of a uniform magnetic field A = 1

2 ρB0eϕ , gives(
∇2 − ω2 + 2qΦω + q2Φ2 + �zqB0 − 1

4
ρ2q2 B2

0 − m2
)

R(ρ, z) = 0 (4)

In the case of a Coulomb potential, Φ = Q /ρ , the bound states can be determined analytically. If the magnetic field is weak,
the B2

0 term can be dropped, and the energy levels become

ω = m

(
1 − �zωc

m

)1/2[
1 + Q 2q2

(nr + 1
2 ±

√
�2

z − Q 2q2)2

]−1/2

(5)
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