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This work proposes a method for sparse polynomial chaos (PC) approximation of high-
dimensional stochastic functions based on non-adapted random sampling. We modify the
standard �1-minimization algorithm, originally proposed in the context of compressive
sampling, using a priori information about the decay of the PC coefficients, when available,
and refer to the resulting algorithm as weighted �1-minimization. We provide conditions
under which we may guarantee recovery using this weighted scheme. Numerical tests are
used to compare the weighted and non-weighted methods for the recovery of solutions
to two differential equations with high-dimensional random inputs: a boundary value
problem with a random elliptic operator and a 2-D thermally driven cavity flow with
random boundary condition.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

As we analyze engineering systems of increasing complexity, we must strategically confront the imperfect knowledge of
the underlying physical models and their inputs, as well as the implied imperfect knowledge of a quantity of interest (QOI)
predicted from these models. The understanding of outputs as a function of inputs in the presence of such uncertainty
falls within the field of uncertainty quantification. The accurate quantification of the uncertainty of the QOI allows for the
rigorous mitigation of both unfounded confidence and unnecessary diffidence in the anticipated QOI.

Probability is a natural mathematical framework for describing uncertainty, and so we assume that the system input is
described by a vector of independent random variables, Ξ . If the random variable QOI, denoted by u(Ξ), has finite variance,
then the polynomial chaos (PC) expansion [1,2] is given in terms of the orthonormal polynomials {ψ j(Ξ )} as

u(Ξ) =
∞∑
j=1

c jψ j(Ξ). (1)

A more detailed exposition on the use of PC expansion in this work is given in Section 2.2.
To identify the PC coefficients, c j in (1), sampling methods including Monte Carlo simulation [3], pseudo-spectral stochas-

tic collocation [4–7], or least-squares regression [8] may be applied. These methods for evaluating the PC coefficients are
popular in that deterministic solvers for the QOI may be used without being adapted to the probability space. However, the
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standard Monte Carlo approach suffers from a slow convergence rate. Additionally, a major limitation to the use of the last
two approaches above, in their standard form, is that the number of samples needed to approximate c j generally increases
rapidly with the dimension of the input uncertainty, i.e., the number of random variables needed to describe the input
uncertainty. In particular, for asymptotically large dimensions, such growth is exponential, see, e.g., [9–13].

In this work, we use the Monte Carlo sampling method while considerably improving the accuracy of approximated
PC coefficients (for the same number of samples) by exploiting the approximate sparsity of the coefficients c j . As u has
finite variance, the c j in (1) necessarily converge to zero, and if this convergence is sufficiently rapid, then u(Ξ) may be
approximated by

û(Ξ) =
∑
j∈C

c jψ j(Ξ), (2)

where the index set C has few elements. When this occurs we say that û is reconstructed from a sparse PC expansion, and
that u admits an approximately sparse PC representation. By truncating the PC basis implied by (1) to P elements, we may
perform calculations on the truncated PC basis. If we let c be a vector of c j , for j = 1, . . . , P , then the approximate sparsity
of the QOI (implied by the sparsity of c) and the practical advantage of representing the QOI with a small number of basis
functions motivate a search for an approximate c which has few non-zero entries [14–20]. We seek to achieve an accurate
reconstruction with a small number of samples, and so look to techniques from the field of compressive sampling [21–29].

Let ξ represent a realization of Ξ . We define Ψ as the matrix where each row corresponds to the row vector of P PC
basis functions evaluated at sampled ξ with the corresponding u(ξ) being an entry in the vector u. We assume N < P
samples of ξ , so that Ψ is N × P , c is P × 1, and u is N × 1. Compressive sampling seeks a solution c with minimum
number of non-zero entries by solving the optimization problem

P0,ε ≡
{

arg min
c

‖c‖0: ‖Ψ c − u‖2 � ε
}
. (3)

Here ‖c‖0 is defined as the number of non-zero entries of c , and a solution to P0,ε directly provides an optimally sparse
approximation in that a minimal number of non-zero entries are used to recover u to within ε in the �2 norm. In general,
the cost of finding a solution to P0,ε grows exponentially in P [29]. To resolve this exponential dependence, the convex
relaxation of P0,ε based on �1-minimization, also referred to as basis pursuit denoising (BPDN), has been proposed [21,22,
24,23,29]. Specifically, BPDN seeks to identify c by solving

P1,ε ≡
{

arg min
c

‖c‖1: ‖Ψ c − u‖2 � ε
}

(4)

using convex optimization algorithms [21,30–36]. In practice, P0,ε and P1,ε may have similar solutions, and the comparison
of the two problems has received significant study, see, e.g., [29] and the references therein.

Note in (4) the constraint ‖Ψ c − u‖2 � ε depends on the observed ξ and u(ξ); not in general Ξ and u(Ξ). As a result,
c may be chosen to fit the input data, and not accurately approximate u(Ξ) for previously unobserved realizations ξ . To
avoid this situation, we determine ε by cross-validation [16] as discussed in Section 2.5.

To assist in identifying a solution to (4), note that for certain classes of functions, theoretical analysis suggests estimates
on the decay for the magnitude of the PC coefficients [37–39]. Alternatively, as we shall see in Section 4.2, such estimates
may be derived by taking into account certain relations among physical variables in a problem. It is reasonable to use
this a priori information to improve the accuracy of sparse approximations [40]. Moreover, even if this decay information
is unavailable, each approximated set of PC coefficients may be considered as an initialization for the calculation of an
improved approximation, suggesting an iterative scheme [41,40,42,43,18,20].

In this work, we explore the use of a priori knowledge of the PC coefficients as a weighting of �1 norm in BPDN in what
is referred to as weighted �1-minimization (or weighted BPDN),

P(W )
1,ε ≡

{
arg min

c
‖W c‖1: ‖Ψ c − u‖2 � ε

}
, (5)

where W is a diagonal weight matrix to be specified. Previously, �1-minimization has been applied to solutions of stochastic
partial differential equations with approximately sparse c [14,16,18,20], but these approximately sparse c include a number
of small magnitude entries which inhibit the accurate recovery of larger magnitude entries. The primary goal of this work
is to utilize a priori information about c , in the form of estimates on the decay of its entries, to reduce this inhibition and
enhance the recovery of a larger proportion of PC coefficients; in particular those of the largest magnitude. We provide
theoretical results pertaining to the quality of the solution identified from the weighted �1-minimization problem P(W )

1,ε .

1.1. Our contribution

This work specifically focuses on weights derived from a priori information for the anticipated solution vector as in
Section 3.1. This a priori information, while not always available, may be produced from analytical convergence analysis as
examined in Section 4.1 or scaling arguments as considered in Section 4.2. Additionally, as samples from a low-fidelity or
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