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1. Introduction

Newton’s method for finding the root for f (x) = 0 is very widely used, both directly and as a conceptual basis for the
development of further methods. There is a large literature on schemes to generalize the method to various higher orders.
In particular, Kung and Traub [1] demonstrated that an equation solver with n functional calls can achieve an order of
convergence 2n−1. However it is believed that no equation solver that achieves this order has been constructed for n > 4.

Many of the existing fast equation solvers are skillfully constructed (for recent examples, see [4–6]) but we consider the
simplicity of implementation. In this paper a simple idea is proposed which is to add a single extra function evaluation to
an arbitrary one-point iterative equation solver of convergence order n, and thereby to accelerate the original scheme to an
order of convergence 2n − 1. Furthermore, it can be shown that with each additional call of the derivatives, the order of
convergence is raised by n − 1 more (see Appendix A).

2. The order of convergence

An iterative equation solver for a set of algebraic equations �F (�x) = 0 is said to have an order of convergence n when

|�xk+1 − �xk| = O
(|�xk − �xk−1|n

)
at the kth iteration. An almost equivalent definition is that∣∣�F (�xk+1)

∣∣ = O
(|�xk+1 − �xk|n

)
in the case when the Jacobian of the system is non-zero at the solution. The order of convergence of an iterative solver is a
measurement of how fast it converges to the true solution.

The proposed new scheme accelerates an iterative solver with nth-order convergence. With a single additional call of the
function itself, the order of convergence can be raised from n to 2n − 1.
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There are two steps with this method and we demonstrate the procedure here for the case n = 3 with the well-known
Halley’s method [3]. Let xk be the kth estimate for the root. One solves the equation (assuming f ′′ �= 0)

f (xk) + f ′(xk)δ + 1

2
f ′′(xk)δ

2 = 0, (1)

and the two roots are explicitly expressed as

δ = − 1

f ′′(xk)

(
f ′(xk) ±

√
f ′(xk)

2 − 2 f (xk) f ′′(xk)
)
.

To recover Newton’s method [2] when the quadratic term vanishes, we pick only one root and it can be written as

δ = sgn( f ′(xk))

f ′′(xk)

(√(
f ′(xk)

)2 − 2 f (xk) f ′′(xk) − ∣∣ f ′(xk)
∣∣).

The above step uses three functional calls. Note that a Taylor series for f (x + δ) at x = xk using Eq. (1) implies

f (xk + δ) = O
(
δ3). (2)

The next step uses one more function call to gain two more orders of convergence. One adds a term f (xk + δ) to Eq. (1),
and solves

f (xk + δ) + f (xk) + f ′(xk)� + 1

2
f ′′(xk)�

2 = 0. (3)

The solution is similar to that obtained in the first step:

� = sgn( f ′(xk))

f ′′(xk)

(√(
f ′(xk)

)2 − 2
(

f (xk + δ) + f (xk)
)

f ′′(xk) − ∣∣ f ′(xk)
∣∣).

Finally, let xk+1 = xk + � for completion of the current iteration cycle.
One computes only four function values f (xk), f ′(xk), f ′′(xk), and f (xk + δ). However, the above scheme is fifth order

convergent as shown next.
From a Taylor expansion one obtains

f (xk + �) = f (xk) + f ′(xk)� + 1

2
f ′′(xk)�

2 + 1

6
f ′′′(xk)�

3 + O
(
�4).

The sum of the first three terms in the right-hand side is equal to − f (xk + δ) from Eq. (3); thus f (xk + �) = − f (xk + δ) +
f ′′′(xk)�

3/6 + O (�4). However, from Eq. (1) and the Taylor expansion of f (xk + δ), the above estimate becomes

f (xk + �) = 1

6
f ′′′(xk)

(
�3 − δ3) + O

(
�4 − δ4) = (� − δ)O

(
�2, δ2). (4)

By subtracting Eq. (1) from Eq. (3) one arrives at

(� − δ)
(

f ′(xk) + O (δ)
) = − f (xk + δ) = O

(
δ3). (5)

It tells us that � and δ are of the same order and

(� − δ) = O
(
δ3).

One easily sees from Eq. (4) and Eq. (5) that

f (xk+1) = f (xk + �) = O
(
�5).

Therefore the method is fifth-order convergent; however it employs only four function values. The proof above can be
generalized for arbitrary n.

If f ′(x) = 0 at the solution, Newton’s method either fails or converges slowly. The rapidly-converging scheme described
above is more stable. However, the order of convergence is reduced from five to four because when f ′ = 0, Eq. (5) gives
(δ − �) = O (δ2) instead of O (δ3). In practice if xk is not close to the solution, the term under the square root ( f ′(xk))

2 −
2 f (xk) f ′′(xk) can become negative and break the iteration. In this case this term can be set to zero to keep the computation
going.

If f ′ is finite at the solution, because f → 0 when xk is close to the solution, x∗ , the term in the square root will
be non-negative when sufficiently close to convergence; if f ′ = 0 at the solution, setting this term to zero (if it becomes
negative) would give δ = − f ′(xk)/ f ′′(xk), which is similar to a Newton-method by L’Hospital’s rule.
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