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We present a new diffuse interface model for the dynamics of inextensible vesicles in a 
viscous fluid with inertial forces. A new feature of this work is the implementation of 
the local inextensibility condition in the diffuse interface context. Local inextensibility is 
enforced by using a local Lagrange multiplier, which provides the necessary tension force 
at the interface. We introduce a new equation for the local Lagrange multiplier whose 
solution essentially provides a harmonic extension of the multiplier off the interface while 
maintaining the local inextensibility constraint near the interface. We also develop a local 
relaxation scheme that dynamically corrects local stretching/compression errors thereby 
preventing their accumulation. Asymptotic analysis is presented that shows that our new 
system converges to a relaxed version of the inextensible sharp interface model. This is 
also verified numerically. To solve the equations, we use an adaptive finite element method 
with implicit coupling between the Navier–Stokes and the diffuse interface inextensibility 
equations. Numerical simulations of a single vesicle in a shear flow at different Reynolds 
numbers demonstrate that errors in enforcing local inextensibility may accumulate and 
lead to large differences in the dynamics in the tumbling regime and smaller differences in 
the inclination angle of vesicles in the tank-treading regime. The local relaxation algorithm 
is shown to prevent the accumulation of stretching and compression errors very effectively. 
Simulations of two vesicles in an extensional flow show that local inextensibility plays an 
important role when vesicles are in close proximity by inhibiting fluid drainage in the near 
contact region.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Vesicles are fluid-filled sacs bounded by a closed lipid bilayer membrane. Vesicles play a critical role in intracellular 
transport of molecules and proteins [4]. Vesicles have been used as drug delivery vehicles [56], microreactors [21] and as 
models of more complex biostructures such as red blood cells (RBCs) [55]. RBCs and vesicles are known to undergo complex 
motions and shape changes under applied flows (e.g., see [2,10,15,22,28,38,50]) and transitions from stationary shapes 
(tank-treading) to trembling to tumbling have been observed as a function of flow conditions and membrane characteristics. 
RBCs resist shear deformation due to the presence of a membrane cytoskeleton and also resist bending and area dilatation 
(e.g., see [3,50,65]), while the lipid bilayer membranes in vesicles are liquid-like, resist bending and are largely inextensible 
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(e.g., see [39,55]). In this paper, we focus on the dynamics of homogeneous vesicles, although our results apply more 
generally to the case in which there may be several lipid components on the membrane that can induce the formation of 
rafts.

Most experimental results on vesicles are performed in the low Reynolds number regime, see e.g. [15,28,42]. Un-
der these conditions inertial effects can be neglected and the Stokes limit considered, which allows the development of 
small-deformation perturbation theories [13,29,36,45–47,64], which all qualitatively predict the experimentally observed 
tank-treading and tumbling motion. Various numerical approaches have also been considered in the Stokes limit to ana-
lyze tank-treading and tumbling, e.g. [6,8,7,24,30,31,33,48,51,57,60,61,66]. Except for [30] in which the vesicle shape was 
assumed to be a fixed ellipsoid, all other models are of Helfrich type and consider a membrane free energy

E =
∫
Γ

1

2
bN(H − H0)

2 dΓ +
∫
Γ

bG K dΓ (1)

with membrane Γ (t), total curvature H , spontaneous curvature H0, normal bending rigidity bN , Gaussian bending rigidity 
bG and Gaussian curvature K . We focus on the case in which the vesicle is homogeneous and its topology does not change. 
Then bN , H0 and bG may be assumed to be constant and the Gaussian bending energy only contributes a constant and 
can therefore be neglected. Lagrange multipliers are used to enforce the inextensibility constraint, which can be considered 
as a global constraint to enforce a constant area of the membrane, but allowing for local variations, or as a stronger local 
constraint. The jump condition for the fluid stress tensor S = −pI + νD, where p is the pressure, ν is the viscosity, and D is 
twice the rate of deformation tensor D = ∇v + (∇v)T , with velocity v, along the membrane then reads

[S · n]Γ = δE
δΓ

unconstrained, (2)

[S · n]Γ = δE
δΓ

+ λglobal Hn global area constraint, (3)

[S · n]Γ = δE
δΓ

+ λlocal Hn + ∇Γ λlocal local inextensibility constraint, (4)

where [ f ]Γ = fouter − f inner, n is the normal pointing out of the vesicle, and ∇Γ is the surface gradient ∇Γ = P∇ , with 
the projection operator P = I − n ⊗ n. The Lagrange multipliers are functionals of the fluid velocity v and are obtained by 
requiring

d

dt

∫
Γ

dΓ =
∫
Γ

Hv · n dΓ = 0, global area constraint,

∇Γ · v = 0, local inextensibility constraint.

We remark that locally inextensible vesicles also conserve the global surface area. The jump condition for the velocity in all 
cases is

[v]Γ = 0.

Due to the linearity of the Stokes problem, efficient algorithms can be derived to solve the coupled fluid-structure 
flow problem, e.g. [7,57,60,61,66]. When inertial forces are considered, the development of efficient algorithms remains a 
significant challenge.

Inertial effects can become important in a variety of biophysical applications. Flowing vesicles/RBCs in larger blood 
vessels such as arterioles and arteries may experience Reynolds numbers of order unity or higher, especially if the vessels 
are constricted due to diseases such as thrombosis, e.g. [5,62]. Large Reynolds numbers may also be found in biomedical 
devices such as ventricular assist devices, e.g., [23]. Motivated by these applications inertial effects are considered in [16,32,
34,41,43,54], which found that the classical tumbling behavior of highly viscous vesicles is no longer observed at moderate 
Reynolds numbers.

The Navier–Stokes equations inside and outside the vesicle read

ρ(∂tv + v · ∇v) − ∇ · S = 0 (5)

∇ · v = 0 (6)

with density ρ = ρ1,2 and stress tensor S = S1,2 = −pI + ν1,2D. Here, the notation ρ1,2 means ρ1 inside and ρ2 outside the 
vesicle. The global area constraint, which can be treated explicitly, has been used by [9] within a front tracking method, by 
[17,18,25,44] within phase field methods, and was also considered in [53] within a level-set approach.

The local inextensibility constraint is more delicate and leads to additional nonlinear coupling in the model. This has 
been considered within a level set approach in [16,34,53,54], immersed boundary methods [31,32] and phase field methods 
[8,7,34,43]. Capsule-like models have also been considered using strain-energy functions that penalize local stretching, e.g. 
[12,41].

In [53,54] the system is rewritten as a single-fluid model by considering the jump conditions for the fluid stress tensor 
as a body–force term with a delta-function δΓ to localize the force at the membrane. An iterative multi-step projection 
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