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We develop stochastic mixed finite element methods for spatially adaptive simulations of 
fluid–structure interactions when subject to thermal fluctuations. To account for thermal 
fluctuations, we introduce a discrete fluctuation–dissipation balance condition to develop 
compatible stochastic driving fields for our discretization. We perform analysis that shows 
our condition is sufficient to ensure results consistent with statistical mechanics. We 
show the Gibbs–Boltzmann distribution is invariant under the stochastic dynamics of 
the semi-discretization. To generate efficiently the required stochastic driving fields, we 
develop a Gibbs sampler based on iterative methods and multigrid to generate fields 
with O (N) computational complexity. Our stochastic methods provide an alternative to 
uniform discretizations on periodic domains that rely on Fast Fourier Transforms. To 
demonstrate in practice our stochastic computational methods, we investigate within 
channel geometries having internal obstacles and no-slip walls how the mobility/diffusivity 
of particles depends on location. Our methods extend the applicability of fluctuating 
hydrodynamic approaches by allowing for spatially adaptive resolution of the mechanics 
and for domains that have complex geometries relevant in many applications.

© 2014 Elsevier Inc. All rights reserved.

0. Introduction

We develop general computational methods for applications involving the microscopic mechanics of spatially extended 
elastic bodies within a fluid that are subjected to thermal fluctuations. Motivating applications include the study of the 
microstructures of complex fluids [17], lipid bilayer membranes [28,33,49], and micro-mechanical devices [29,38]. Even 
in the deterministic setting, the mechanics of fluid–structure interactions pose a number of difficult and long-standing 
challenges owing to the rich behaviors that can arise from the interplay of the fluid flow and elastic stresses of the mi-
crostructures [19,43]. To obtain descriptions tractable for analysis and simulations, approximations are often introduced into 
the fluid–structure coupling. For deterministic systems, many spatially adaptive numerical methods have been developed 
for approximate fluid–structure interactions [2,25,26,30,36,40]. In the presence of thermal fluctuations, additional challenges 
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arise from the need to capture in computational methods the appropriate propagation of fluctuations throughout the dis-
cretized system to obtain results consistent with statistical mechanics. In practice, challenges arise from the very different 
dissipative properties of the discrete operators relative to their continuum differential counterparts. These issues have im-
portant implications for how stochastic fluctuations should be handled in the discrete setting. Even when it is possible 
to formulate stochastic driving fields in a well-founded manner consistent with statistical mechanics, these Gaussian ran-
dom fields have often many degrees of freedom and non-trivial spatial correlations that can be difficult to sample without 
significant computational expense. Many finite difference methods on uniform periodic meshes have been developed for 
fluctuating hydrodynamics [6,7,9,16,18,42,48]. One of the main reasons that fluctuating hydrodynamics is treated on uni-
form periodic domains is so that stochastic driving fields can be generated using Fast Fourier Transforms (FFTs) [6,7]. Here, 
we take a different approach by developing stochastic methods based on Finite Element Methods for fluctuating hydrody-
namics and provide an alternative to Fast Fourier Transforms for the generation of stochastic driving fields. Our approach 
allows for non-uniform spatially adaptive discretizations on non-periodic domains with geometries more naturally encoun-
tered in many applications.

We develop Finite Element Methods with properties that facilitate the introduction of stochastic driving fields and their 
efficient generation. We show our discretization approach provides operators that satisfy certain symmetry and commutation 
conditions that are important when subject to the incompressibility constraint for how thermal fluctuations propagate 
throughout the discrete system. We formulate the stochastic equations for our fluid–structure system subject to thermal 
fluctuations in Section 1. We introduce for a given spatial discretization our general procedure for deriving compatible 
stochastic driving fields that model the thermal fluctuations in a manner consistent with statistical mechanics in Section 2. 
To obtain the stochastic driving fields with the required spatial correlation structure, we develop stochastic iterative methods 
based on multigrid to generate the Gaussian random fields with computational complexity O (N) in Section 3. We present 
validation of our stochastic numerical methods with respect to the hydrodynamic coupling and thermal fluctuations in 
Section 5. To demonstrate our approach in practice, we present simulations of a few example systems in Section 6.

Overall, our approach extends the range of problems that can be treated numerically with fluctuating hydrodynamic 
methods by allowing for arbitrary geometries with walls having no-slip boundary conditions and by allowing for spatially 
adaptive resolution. Many of the central ideas used for our numerical approximation of the fluctuating hydrodynamic equa-
tions should also be applicable in the approximation of other parabolic Stochastic Partial Differential Equations (SPDEs). 
We expect our stochastic numerical methods for fluctuating hydrodynamics to be useful in applications where the domain 
geometry plays an important role.

1. Fluid–structure hydrodynamics and fluid–structure interactions

We describe the mechanics of fluid–structure interactions subject to thermal fluctuations using the Stochastic Eulerian 
Lagrangian Method (SELM) [6]. In the inertial regime this is given by momentum equations for the fluid coupled to mo-
mentum equations for the microstructures [6]. We consider here the regime in which the fluid–structure coupling is strong 
and the microstructures are mass density matched with the fluid [4,6]. This regime is closely related to the Stochastic Im-
mersed Boundary Method [4,7,14,37]. In this regime, we use the time-dependent Stokes equations for the fluid coupled to 
an equation of motion for the microstructures

ρ
∂u

∂t
= μ�u − ∇p + f s + f thm in Ω

∇ · u = 0 in Ω

u|∂Ω = 0. (1.1)

The elastic microstructures with configuration X are given by the following equation of motion and coupling condition that 
models the bidirectional coupling between the fluid and microstructures

dX

dt
= Γ u (1.2)

f s = Λ
[−∇Φ(X)

]
. (1.3)

The thermal fluctuations are taken into account by the Gaussian random field f thm which when decomposed into a mean 
and fluctuating part f thm = f̄ thm + f̃ thm has the form

f̄ thm = 〈 f thm〉 = kB T ∇X · Λ (1.4)〈
f̃ thm(s,x) f̃

T
thm(t,y)

〉 = 2μ�C(x − y)δ(t − s) (1.5)

C(x − y) = kB Tρ−1δ(x − y). (1.6)

These stochastic driving fields were derived for the mechanical system using the SELM framework in [6]. A notable difference 
with the original formulation of the Stochastic Immersed Boundary Method (SIBM) is the presence of the thermal drift 
term in Eq. (1.4) which arises from the more systematic treatment through stochastic averaging to obtain in this regime 
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