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Based on the total Lagrangian kinematical description, a discontinuous Galerkin (DG) 
discretization of the gas dynamics equations is developed for two-dimensional fluid flows 
on general unstructured grids. Contrary to the updated Lagrangian formulation, which 
refers to the current moving configuration of the flow, the total Lagrangian formulation 
refers to the fixed reference configuration, which is usually the initial one. In this 
framework, the Lagrangian and Eulerian descriptions of the kinematical and the physical 
variables are related by means of the Piola transformation. Here, we describe a cell-
centered high-order DG discretization of the physical conservation laws. The geometrical 
conservation law, which governs the time evolution of the deformation gradient, is solved 
by means of a finite element discretization. This approach allows to satisfy exactly the Piola 
compatibility condition. Regarding the DG approach, it relies on the use of a polynomial 
space approximation which is spanned by a Taylor basis. The main advantage in using 
this type of basis relies on its adaptability regardless the shape of the cell. The numerical 
fluxes at the cell interfaces are computed employing a node-based solver which can be 
viewed as an approximate Riemann solver. We present numerical results to illustrate the 
robustness and the accuracy up to third-order of our DG method. First, we show its ability 
to accurately capture geometrical features of a flow region employing curvilinear grids. 
Second, we demonstrate the dramatic improvement in symmetry preservation for radial 
flows.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We aim at describing a high-order discontinuous Galerkin (DG) method for solving the two-dimensional total Lagrangian 
form of the gas dynamics equations on general unstructured grids. It is well known that fluid dynamics relies on two 
kinematics descriptions: the Eulerian or spatial description and the Lagrangian or material description, refer for instance 
to [25,22]. In the former, the conservation laws are written using a fixed reference frame whereas in the latter they are 
written through the use of a time dependent reference frame that follows the fluid motion. The Lagrangian representation is 
particularly well adapted to describe the time evolution of fluid flows contained in regions undergoing large shape changes 
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due to strong compressions or expansions. Further, in this approach, there is no mass flux across the boundary surface of 
a control volume moving with the fluid velocity. Thus, Lagrangian representation provides a natural framework to track 
accurately material interfaces in multi-material compressible flows. Moreover, such a representation avoids the apparition 
of numerical diffusion resulting from the discretization of the convection terms present in the Eulerian frame.

This paper is primarily concerned with the development of a Lagrangian method for which the main feature relies on the 
use of the total Lagrangian formalism. In this approach, the physical conservation laws are written employing the Lagrangian 
coordinates which refer to the initial configuration of the fluid flow. Moreover, in these equations the divergence and gra-
dient operators are expressed by means of the Piola transformation [25], which requires the knowledge of the deformation 
gradient tensor, i.e. the Jacobian matrix associated to the Lagrange–Euler flow map. The deformation gradient tensor charac-
terizes the time evolving deformation and is governed by a partial differential equation named the geometric conservation 
law (GCL). To ensure the consistency between the initial and the current configurations, the deformation gradient tensor 
has to satisfy an involutive constraint [45], which implies the Piola compatibility condition. The total Lagrangian approach 
is very well known in the solid mechanics community wherein it is extensively used to model solid dynamics undergoing 
large deformations [25]. The first application of the total Lagrangian approach to the gas dynamics equations has been un-
dertaken in [1,34] by means of a DG type discretization. However, the use of the aforementioned method is restricted to a 
representation on the initial configuration since it cannot be rigorously re-interpreted on the current configuration. We also 
note that the theoretical properties of the gas dynamics equations written under the total Lagrangian formulation have been 
thoroughly studied in [16,42].

In contrast with respect to the total Lagrangian formulation, the updated Lagrangian formulation is a moving domain 
method, which is widely employed. In this approach, the gas dynamics equations are written employing the Eulerian co-
ordinates. They refer to the current configuration of the fluid flow. The time derivative of the physical variables is taken 
following the fluid particles paths: this is the material derivative. The integral formulation of the conservation laws is read-
ily obtained by employing the Reynolds transport formula over an arbitrary moving control volume. The time rate of change 
of a zone volume is governed by a partial differential equation which is the updated Lagrangian form of the GCL. It is worth 
mentioning that at the discrete level the zone volume computed from its vertices coordinates must rigorously coincide with 
the zone volume deduced from the numerical solution of the GCL. This critical requirement is the cornerstone on which any 
proper multi-dimensional updated Lagrangian scheme should rely.

Two approaches are mainly employed to solve the updated Lagrangian formulation of the gas dynamics equations. The 
first one, which is called the staggered grid hydrodynamics, consists in using a staggered discretization wherein the kine-
matic variables (vertex position, velocity) are located at nodes whereas the thermodynamic variables (density, pressure, 
internal energy) are defined at the cell centers. The conversion of kinetic energy into internal energy through shock waves, 
consistently with the second law of thermodynamics, is ensured by adding an artificial viscosity term. The staggered grid 
schemes employed in most hydro-codes have been remarkably successful over the past decades in solving complex multi-
dimensional compressible fluid flows, refer for instance to [9,10]. However, they clearly have some theoretical and practical 
deficiencies such as mesh imprinting and symmetry breaking. In addition, the fact that all variables are not conserved 
over the same space can lead to serious difficulties in the perspective of an arbitrary Lagrangian–Eulerian (ALE) extension. 
The second approach, known as cell-centered hydrodynamics, employs a cell-centered placement of all hydrodynamic vari-
ables including the momentum. This approach consists of a moving mesh finite volume method wherein the numerical 
fluxes (multi-valued nodal pressures and nodal velocity) are computed through the use of node-centered approximate Rie-
mann solvers. In this framework, momentum and total energy are conserved and an entropy inequality is satisfied at the 
semi-discrete level to ensure the thermodynamic consistency of the numerical method. Moreover, the numerical fluxes are 
constructed to satisfy the GCL compatibility. The interested readers may refer to the following papers [11,37,12,38,3,8] for 
a more detailed description of this approach and its variants. Let us point out that work has been done to investigate the 
relationships between the staggered and the cell-centered discretizations, refer to [41,35].

Up to our knowledge, the interpretation of the staggered schemes of Goad [23] and Wilkins [53] by means of a finite 
element method has been initially introduced by Lascaux at the beginning of the 70s [32,33]. This finite element approach 
has been further developed, producing various interesting staggered schemes. For instance, a compatible finite element 
Lagrangian hydrodynamics algorithm used in a multi-material ALE strategy has been described in [2]. We also note the 
development of a variational multi-scale stabilized approach in finite element computation of Lagrangian hydrodynamics 
where a piecewise linear approximation was adopted for the variables [47,46]. The case of Q1/P0 finite element is stud-
ied in [48] where the kinematic variables are represented using a piecewise linear continuous approximation while the 
thermodynamic variables utilize a piecewise constant representation.

Except the pioneering work of [1,34], all the aforementioned approaches are characterized by an accuracy which is at 
most of second order, for problems with higher than one dimension space. This accuracy restriction is a natural consequence 
of the spatial discretization of the Lagrange–Euler flow map employed. Namely, the gas dynamics equations are discretized 
on a moving grid made of polygonal cells whose edges remain straight lines throughout the motion. This amounts to claim 
that the Lagrange–Euler flow map admits a linear continuous representation with respect to Eulerian coordinates over the 
deforming computational grid. Further, the kinematic velocity field also admits a linear continuous representation. Therefore, 
as noticed in [13], this approximation of the grid motion implies a second-order error in the numerical method. To reach 
a higher order of accuracy, one has to take into account a higher order discretization of the kinematics of the flow. This 
point has been successfully addressed in [13] in which the authors present a third-order Lagrangian scheme for solving gas 
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