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Finite volume methods traditionally employ dimension by dimension extension of the one-
dimensional reconstruction and averaging procedures to achieve spatial discretization of 
the governing partial differential equations on a structured Cartesian mesh in multiple di-
mensions. This simple approach based on tensor product stencils introduces an undesirable 
grid orientation dependence in the computed solution. The resulting anisotropic errors lead 
to a disparity in the calculations that is most prominent between directions parallel and 
diagonal to the grid lines. In this work we develop isotropic finite volume discretization 
schemes which minimize such grid orientation effects in multidimensional calculations by 
eliminating the directional bias in the lowest order term in the truncation error. Explicit 
isotropic expressions that relate the cell face averaged line and surface integrals of a func-
tion and its derivatives to the given cell area and volume averages are derived in two and 
three dimensions, respectively. It is found that a family of isotropic approximations with a 
free parameter can be derived by combining isotropic schemes based on next-nearest and 
next-next-nearest neighbors in three dimensions. Use of these isotropic expressions alone 
in a standard finite volume framework, however, is found to be insufficient in enforcing 
rotational invariance when the flux vector is nonlinear and/or spatially non-uniform. The 
rotationally invariant terms which lead to a loss of isotropy in such cases are explicitly 
identified and recast in a differential form. Various forms of flux correction terms which 
allow for a full recovery of rotational invariance in the lowest order truncation error terms, 
while preserving the formal order of accuracy and discrete conservation of the original fi-
nite volume method, are developed. Numerical tests in two and three dimensions attest the 
superior directional attributes of the proposed isotropic finite volume method. Prominent 
anisotropic errors, such as spurious asymmetric distortions on a circular reaction–diffusion 
wave that feature in the conventional finite volume implementation are effectively sup-
pressed through isotropic finite volume discretization. Furthermore, for a given spatial 
resolution, a striking improvement in the prediction of kinetic energy decay rate corre-
sponding to a general two-dimensional incompressible flow field is observed with the use 
of an isotropic finite volume method instead of the conventional discretization.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Numerical methods that extend one-dimensional approximations to higher dimensions by employing tensor product 
polynomials and stencils offer a straightforward and reliable route towards performing multidimensional spatial discretiza-
tion on a structured Cartesian mesh. Due to their simplicity such methods have gained popularity and find widespread 
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use in multidimensional finite difference and finite volume Cartesian grid formulations [1,2]. The localized stencil associ-
ated with such multidimensional methods facilitates computationally efficient calculations in that the total cost associated 
with such methods increases only sublinearly with the number of dimensions. The dimensionally decoupled formulation 
employed in such methods also simplifies implementation of high-order discretization schemes since the basis polynomials 
used in the approximation are easily obtained by combining one-dimensional basis polynomials along the Cartesian axes.

While the reliability and effectiveness of the tensor product based combination of the one-dimensional approximation 
methods for multidimensional discretization is beyond doubt there are certain disadvantages of this simplified approach. 
Application of tensor product stencils and associated basis functions is known to introduce directional dependence in mul-
tidimensional calculations. The anisotropic errors that are caused by this directional dependence are often manifest in the 
computed solution in the form of spurious features with an imprint of the underlying Cartesian mesh. Formation and growth 
of anisotropic distortions on a radially symmetric expanding or contracting wave front is a well known example (e.g. [3–5], 
also see Section 5) which demonstrates how anisotropic errors induce an artificial asymmetry in the numerical solutions 
which should evolve symmetrically. The inability of the dimensionally decoupled conventional approach in preserving the 
directional attributes can severely impact the accuracy of the computed solution especially when the spatial resolution is 
such that the solution is either marginally resolved or under resolved. In such cases, the large growth in anisotropic errors 
that results from an inadequate spatial resolution can lead to a pronounced discrepancy between the directional attributes 
of the true physical solution and the one that is obtained from simulations.

To an extent this limitation can be overcome by increasing either the spatial resolution or the order of accuracy of the 
discretization methods (e.g. [5,6]). However, an improvement in the directional accuracy due either to the increased reso-
lution or the order of accuracy comes at the price of a substantial rise in computational expense owing to the significant 
increase in the number of degrees of freedom and more stringent temporal stability restrictions for explicit time integra-
tion. Furthermore, a large class of interesting problems involve sharp gradients which can not be represented with sufficient 
accuracy on a discrete mesh even with successive refinements in spatial resolution or an increase in the order of accuracy. 
Discontinuity capturing simulations of formation and propagation of sharp fronts such as shock waves or formation of high 
curvature regions associated with merger or fragmentation events in multiphase flows constitute two such representative 
situations in which even an initially smooth solution loses its regularity at later times. In such cases any finite resolution 
provided by a fixed Eulerian mesh eventually becomes insufficient for a complete resolution of all the length scales asso-
ciated with the physical solution. Even smooth solutions with high wavenumber content, such as the steep gradients in 
turbulent flows at sufficiently high Reynolds numbers, are essentially seen as near singular on a discrete mesh. In such 
situations, an improvement in directional accuracy with grid refinement is either impossible or prohibitively expensive. 
Moreover, the susceptibility of high-order discretization methods to numerical instabilities necessitates regularization in the 
form of filtering or artificial dissipation. This additional step is counterproductive in that it makes the task of controlling 
anisotropic errors much more difficult and can also lead to a substantial increase in computational expense. It is therefore 
necessary to devise alternative discretization strategies which eliminate anisotropic errors in the conventional dimensionally 
decoupled methods on relatively coarse meshes without resorting to either grid refinement or an increase in the formal 
order of accuracy.

Our prime objective in this work is to develop genuinely multidimensional approximation techniques which minimize 
anisotropic errors for a class of popular cell centered conservative finite volume methods. Finite volume methods have a 
distinct advantage over the conventional finite difference methods in that they naturally satisfy the primary conservation 
properties of the governing equations exactly. This attractive attribute is indispensable for multiphase flow computations 
where emphasis is placed on mass conservation [7,8] and is of paramount importance in discontinuity capturing computa-
tions of shock waves for instance where conservation must be preserved if one were to recover correct shock propagation 
speeds [9,10]. However, conventional finite volume methods employ one-dimensional sweeps for numerical approximation 
and suffer from grid orientation induced anisotropic errors (see Section 2). A reduction of the anisotropic errors in the con-
ventional finite volume method would help achieve superior directional accuracy while simultaneously preserving discrete 
conservation. The fact that finite volume methods utilize a combination of reconstruction, flux computation and quadra-
ture rules for spatial discretization makes the task of analysis of the anisotropic errors and their minimization particularly 
challenging and more so in presence of nonlinearity and spatial variations (see Section 4).

The present work on multidimensional conservative finite volume method with minimal anisotropic errors belongs to the 
larger class of physics-compatible methods. Such methods aim at enforcing essential physical properties of the continuum 
model in the discrete approximation of the governing equations through appropriate changes in the discretization methodol-
ogy. Conservative finite difference and finite volume methods [2,33–41] (see [42–44] for an overview), symmetry-preserving 
methods for simulation of single [45,46] and multiphase flows [47], mimetic or compatible discretization methods [48,49]
(see [50] for a review), invariant discretization methods (cf. [51,52]) and energy conserving temporal integrators (e.g. [53]) 
are a few immediate examples of such methods which have been shown to provide substantial improvement in accuracy 
over the conventional approximation methods. The importance of such methods has been recognized in a recent special 
issue on physics-compatible numerical methods [54]. Here, in addition to conservation we emphasize on rotational invari-
ance as an essential property in the multidimensional finite volume method and highlight its importance through a series 
of test cases which clearly demonstrate the remarkable improvement in directional accuracy over the conventional conser-
vative finite volume method. The development and realization of two and three-dimensional finite volume schemes which 
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