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In this work, we propose an asymptotic-preserving Monte Carlo method for the Boltzmann 
equation that is more efficient than the currently available Monte Carlo methods in the 
fluid dynamic regime. This method is based on the successive penalty method [39], which 
is an improved BGK-penalization method originally proposed by Filbet and Jin [16]. Here 
we introduce the Monte Carlo implementation of the method, which, despite its lower 
order accuracy, is very efficient in higher dimensions or simulating some complicated 
chemical processes. This method allows the time step independent of the mean free time 
which is prohibitively small in the fluid dynamic regime. We study some basic properties of 
this method, and compare it with some other asymptotic-preserving Monte Carlo methods 
in terms of numerical performance in different regimes, from rarefied to fluid dynamic 
regimes, and their computational efficiency.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background: numerical methods for the Boltzmann equation

In the study of flows which span a wide range of flow regimes, i.e. in atmospheric re-entry problems, the density 
distribution f (t, x, v) of a dilute gas at position x, with velocity υ and at time t , is governed by the Boltzmann equation 
[5,9]:

∂ f

∂t
+ υ · ∇x f = 1

ε
Q ( f , f ), x ∈R

dx , v ∈ R
dv . (1.1)

In Eq. (1.1), the bilinear collision operator Q ( f , f ) describes the binary collisions of the particles and is defined by

Q ( f , f )(υ) =
∫

Rdυ

∫
Sdυ−1

σ
(|υ − υ1|,ω

)[
f
(
υ ′) f

(
υ ′∗
)− f (υ) f (υ∗)

]
dωdυ∗, (1.2)
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where ω is a unit vector on the sphere Sdυ−1. The collision operator Q ( f , f ) can also be rewritten as

Q ( f , f )(υ) = Q +( f , f ) + f Q −( f ), (1.3)

where Q + denotes the gain term and Q − is the loss term:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q +( f , f ) =
∫

Rdυ

∫
Sdυ−1

σ
(|υ − υ1|,ω

)
f
(
υ ′) f (υ ′∗)dωdυ∗

Q −( f ) =
∫

Rdυ

∫
Sdυ−1

σ
(|υ − υ1|,ω

)
f (υ∗)dωdυ∗.

(1.4)

The velocity (υ ′, υ ′∗) represents the post-collisional velocities whose relation to the pre-collisional velocities (υ, υ∗) are 
given by⎧⎪⎨

⎪⎩
υ ′ = 1

2

(
υ + υ∗ + |υ − υ∗|ω

)
,

υ ′∗ = 1

2

(
υ + υ∗ − |υ − υ∗|ω

)
.

(1.5)

In Eq. (1.2), σ is the nonnegative collision kernel which depends on the model of forces between particles, and we also 
define the total cross section σT as (see [5] for more details)

σT
(|υ − υ∗|

)= ∫
Sdυ−1

σ
(|υ − υ∗|,ω

)
dω. (1.6)

Meanwhile, one can refer to Chapman and Cowling [10] for the details of several models, such as the inverse power force 
model and the Lennard-Jones model. In the case of inverse kth power force between particles, it has the form

σ
(|υ − υ∗|, θ

)= bα(θ)|υ − υ∗|α, (1.7)

where α = (k − 5)/(k − 1). In numerical simulation of rarefied gases, the variable hard sphere (VHS) model is often used, 
in which, bα(θ) = Cα , where Cα is a positive constant. The case α = 0 corresponds to the Maxwellian gas, while the case 
α = 1 represents the hard sphere gas.

With f , the macroscopic density ρ , mean velocity u, and temperature T , can be obtained by taking the moments:

ρ =
∫

Rdυ

f dυ, u = 1

ρ

∫
Rdυ

υ f dυ, T = 1

dυρ

∫
Rdυ

|υ − u|2 f dυ. (1.8)

Moreover, the collision operator (1.2) satisfies some important properties:

• Conservation laws:∫
Rdυ

Q ( f , f )φ(υ)dυ = 0, for φ(υ) = 1,υ, |υ|2;

which gives conservation of mass, momentum and total energy.
• Boltzmann’s H theorem [36]:

d

dt

∫
f log f dυ =

∫
Q ( f , f ) log f dυ ≤ 0,

which implies that any system reaches its equilibrium state at which the entropy − 
∫

f log f dυ is maximum. The 
equilibrium distribution function has the form of a local Maxwellian distribution:

M(ρ, u, T )(υ) = ρ

(2π T )dυ/2
exp

(
−|u − υ|2

2T

)
. (1.9)

The Knudsen number ε in (1.1), as a parameter of great significance in the kinetic theory, is the ratio of the local mean 
free path � in gases to the characteristic length scale. For a small value of ε, the Chapman–Enskog expansion connects 
the Boltzmann equation (1.1) with hydrodynamic equations, i.e., the compressible Navier–Stokes equations (the first order 
approximation) and the compressible Euler equations (the zeroth order approximation). By taking ε → 0, f →M, then one 
can obtain the hydrodynamic Euler equations
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