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The paper presents a novel, efficient and accurate algorithm for laminar and turbulent flow 
simulations. The spatial discretisation is performed with help of the compact difference 
schemes (up to 10th order) for collocated and half-staggered grid arrangements. The 
time integration is performed by a predictor–corrector approach combined with the 
projection method for pressure–velocity coupling. At this stage a low order discretisation 
is introduced which considerably decreases the computational costs. It is demonstrated 
that such approach does not deteriorate the solution accuracy significantly. Following 
Boersma B.J. [13] the interpolation formulas developed for staggered uniform meshes are 
used also in the computations with a non-uniform strongly varying nodes distribution. In 
the proposed formulation of the projection method such interpolation is performed twice. 
It is shown that it acts implicitly as a high-order low pass filter and therefore the resulting 
algorithm is very robust. Its accuracy is first demonstrated based on simple 2D and 3D 
problems: an inviscid vortex advection, a decay of Taylor–Green vortices, a modified lid-
driven cavity flow and a dipole–wall interaction. In periodic flow problems (the first two 
cases) the solution accuracy exhibits the 10th order behaviour, in the latter cases the 3rd 
and the 4th order is obtained. Robustness of the proposed method in the computations of 
turbulent flows is demonstrated for two classical cases: a periodic channel with Reτ = 395
and Reτ = 590 and a round jet with Re = 21 000. The solutions are obtained without any 
turbulence model and also without any explicit techniques aiming to stabilise the solution. 
The results are in a very good agreement with literature DNS and LES data, both the mean 
and r.m.s. values are predicted correctly.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

High-order discretisation methods are irreplaceable in DNS (Direct Numerical Simulation) and LES (Large Eddy Simula-
tion) studies focused on very deep and detailed analysis of the fluid flow problems. The present status of majority of the 
high-order methods and possibilities of their applications are presented in a recent review paper [1]. Undoubtedly, from the 
point of view of the solution accuracy none of discretisation methods may compete with the spectral and pseudo-spectral 
methods [2] which are regarded the most accurate. Their weak point is that they can be applied in rather simple computa-
tional domains and with the nodes distribution and boundary conditions enforced by the applied method. For instance, the 
spectral approach based on the Fourier series is suited for periodic problems with uniform meshes, the collocation method 
using the Chebyshev polynomials is defined on the computational points stretched near the boundaries and is suitable for 
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wall bounded flows. In both the cases transformations to different node distributions or applications in irregular domains 
are not trivial and require domain division, normalisation, co-ordinate transformations, etc. From this point of view the high-
order compact difference methods [3] seem to be very attractive giving much more possibilities regarding non-uniformity 
of the computational meshes, selection of the boundary conditions or shapes of computational domains. The most apparent 
difference between the compact and classical finite difference schemes is the computational stencil. In the compact meth-
ods, the approximations of derivatives are obtained by solving linear systems of equations involving all grid points along 
particular node lines. It makes the approximation global and therefore very sensitive to implementation of the boundary 
conditions and accuracy of the approximation in regions near boundary domain. Although the compact methods cannot 
compare with flexibility of the finite volume or finite element based methods, they are successfully applied on non-uniform 
meshes and in irregular domains, often in combination with domain decomposition approach and with transformation from 
physical to computational domains [4–7].

In this paper, the high-order compact method (up to 10th order) is applied for incompressible flow problems. One of 
the main difficulties in simulations of incompressible flow is the calculation of the pressure for which there is no evolution 
equation nor the equation of state as in the case of simulations of compressible flows. There are number of algorithms 
developed to determine the pressure field (family of SIMPLE methods, PISO method, projection method, auxiliary potential 
method and probably more); an overview of existing approaches may be found in [8]. The solution method which is used in 
this work is based on the projection method [8], where the pressure is obtained from the Poisson equation. The well known 
problem of the projection method is the pressure oscillation appearing due to decoupling of the velocity and pressure field. 
A remedy for that is to apply the so-called staggered grids introduced in 60’ by Harlow and Welch [9], where the pressure 
and velocity components are stored in different locations. This is well known approach and is described in books dealing 
with the fluid flow problems, for instance [8,10,11]. The staggered grid arrangement has been used in low order solvers 
based on the finite difference or finite volume methods for decades. Recently, the staggered meshes were used also in 
combination with the high order compact schemes, both for compressible [12,13] and incompressible flows [14–20].

Besides of removing the pressure oscillation the evident advantage of the staggered grids is that the mass conserva-
tion is a trivial consequence of the mesh staggering. In case of the standard 2nd order discretisation method of Harlow 
and Welch [9] the kinetic energy is conserved as well. For higher order methods (e.g. the finite difference 4th order) the 
momentum and energy conserving discretisation schemes have been also proposed [21]. The conservation properties of 
staggered arrangement on unstructured meshes were studied in [22]. It was shown that discretisation of the divergence 
form of the Navier–Stokes equations can conserve both the kinetic energy and momentum.

The staggered grid arrangement has also a few very important disadvantages: (i) it requires interpolation between loca-
tions of the velocity components – this increases the computational costs; (ii) at the domain boundaries not all the velocity 
components are defined explicitly – this leads to difficulties in implementation of the boundary conditions; (iii) for non-
uniform and curvilinear meshes the co-ordinate transformation has to be performed at different locations. These problems 
may be overcome by applying the so-called half-staggered meshes introduced in [23] which also ensure strong coupling 
between the pressure and velocity field. In this approach all three velocity components are stored in the same locations 
while the pressure is computed in the points shifted half a cell width from the velocity nodes. Comparing to the fully 
staggered grid arrangement the half-staggered grids greatly simplify the numerical codes. They facilitate the solutions of 
the flow problems in complicated domains with almost the same effort as in the case of collocated meshes. Applications 
of the half-staggered approach on curvilinear meshes were presented in [24,25]. More recently, the half-staggered meshes 
were used in combination with the immersed boundary approach [26,27] and also for adapting moving meshes [28]. In 
all these cases the spatial discretisation was performed with the 2nd order schemes. Probably the first application of the 
half-staggered approach with a higher order discretisation was proposed in [29] using the compact difference schemes. It 
was shown that separation of the pressure from the velocity locations is sufficient to obtain accurate results with almost 
non-oscillatory pressure field. The authors proposed an efficient solution method of the Poisson equation through a trans-
formation of the pressure into the spectral space using the Fourier transformation and the cosine Fourier transformation 
for periodic and symmetric boundaries. Extension of the method to non-periodic cases (for instance wall bounded flows) 
required introduction of ghost cells. This revealed to be the main factor influencing the accuracy of the proposed method 
which for a lid-driven flow in a cavity turned out to be only the 2nd order.

In the present work we combine the half-staggered grid arrangement and the compact difference approximation with 
aim to obtain high order solutions. Nominally the compact methods lead to very small discretisation errors but, as shown 
in [29], the final results are not always as accurate as one could expect. Apart from accuracy we focus on two aspects: com-
putational efficiency and stability of the proposed algorithm. In particular it is shown that application of low order finite 
difference schemes for discretisation of the Poisson equation reduces only slightly the overall solution accuracy, but com-
paring to the fully compact discretisation it gives a significant gain of computational efficiency. Robustness of the proposed 
method is obtained by a specific way of the velocity interpolation which is unavoidable part of the projection method on 
staggered meshes. Unlike in [23–25,29] in the present formulation the velocity field is interpolated twice: before and after 
the pressure correction step. The test cases include periodic, wall bounded and spatially developing flows. It is shown that 
the solution algorithm is stable and there is no need to use any additional stabilisation methods (filtering, artificial dissipa-
tion, etc.). The obtained solutions are stable and accurate in high Reynolds number flows and also in a case of an inviscid 
flow. The results are completely free from any oscillations in the velocity and pressure field. The order of approximation 
of the proposed algorithm is first determined based on simple 2D and 3D flow problems for which analytical and reliable 
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