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We present a two-dimensional hybrid fluid-PIC scheme for the simulation of whistler wave 
excitation by relativistic electron beams. This scheme includes a number of features which 
are novel to simulations of this type, including non-periodic boundary conditions and fresh 
particle injection. Results from our model suggest that non-periodicity of the simulation 
domain results in the development of fundamentally different wave characteristics than 
are observed in periodic domains.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Whistlers are electromagnetic waves that exist in a magnetized plasma below the electron cyclotron frequency, Ω =
eB0/me (where e is the fundamental charge, me is the electron mass, and B0 is the magnitude of the background magnetic 
field, B0). There is great interest in both naturally occurring and artificially induced whistlers because of their ability to 
resonantly interact with energetic electrons. It is believed that both rapid energization and rapid loss of electrons from the 
terrestrial radiation belts may be due to whistler wave dynamics. In situ observations of large-amplitude whistler mode 
waves in the Earth’s radiation belts [1–3] have sparked a renewed interest in understanding the range of possible interac-
tions between whistlers and relativistic electrons.

Self-consistent studies of whistler-particle interactions usually take one of two forms – particle-based simulations using 
the particle-in-cell (PIC) method, e.g., [4], or hybrid simulations which combine a fluid description of cold background 
plasmas and a kinetic description (either PIC or Vlasov methods) of the energetic electron components, e.g., [5–7]. Although 
each approach has its strengths, hybrid methods generally allow for simulations to consider larger domains because fewer 
particles are needed and they are able to take larger time steps by eliminating unwanted high-frequency phenomena (e.g., 
plasma oscillations).

Lampe et al. [5] introduced a quasineutral hybrid simulation technique for whistler waves based on electron magnetohy-
drodynamics (EMHD). Although the method they described was fully valid in two dimensions, they only presented results 
involving particles in one dimension. In this paper, we extend those results to two dimensions and discuss some of the 
complications that are encountered when using such a model in two dimensions, particularly when avoiding the use of 
periodic boundary conditions.
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There is a robust theoretical literature regarding whistler-electron interactions, and a comprehensive discussion of it 
can be found in Shklyar & Matsumoto [8]. An interesting aspect of this interaction is that whistlers and electrons have a 
counter-propagating resonance, requiring wave propagation in the opposite direction of the resonant particle, since

ω − (k · v)‖ = nΩ

γ
(1)

where ω is the wave frequency, n is the harmonic number, k is the wave vector, v is the particle velocity, γ is the relativistic 
Lorentz factor, and the subscript ‖ indicates the component along the background magnetic field.

In this paper, we will describe a two-dimensional hybrid fluid-PIC model for whistler wave interaction with relativistic 
electrons. We will begin by providing theoretical background for the EMHD model and the beam-whistler instability. Next, 
we will discuss some of the numerical and algorithmic challenges that have been dealt with in the construction of this 
model. Finally, we will demonstrate the excitation of whistlers by beams finite beam dimensions, noting the presence of a 
characteristic sequence of wave growth “phases” that precede saturation.

2. The hybrid electron magnetohydrodynamics model

Electron magnetohydrodynamics is an approximation suitable for modeling plasma wave phenomena in the frequency 
range ωLH < ω < Ω , where ωLH is the lower hybrid frequency, Ω is the electron cyclotron frequency, and ω is the wave 
(angular) frequency. In this approximation, the plasma is assumed to be quasineutral (ni ≈ ne ≡ n) and ions are taken to be 
an immobile neutralizing background.

In our hybrid version of the EMHD model, the primary equations are Faraday’s law, Ampere’s law (without displacement 
current), and Ohm’s law

∂B

∂t
= −∇ × E (2)

u = − 1

nce

(∇ × B

μ0
− Jh − Js

)
(3)

E + λ2
e ∇ × ∇ × E = −u × B − me

nce

(
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e

(
∂Jh

∂t
+ ∂Js

∂t

))
(4)

where λe = c/ωe is the electron inertial length, ν is the collision frequency, and the subscripts c, h, and s refer to cold 
electrons, hot electrons, and external sources, respectively.

In both Ampere’s law and Ohm’s law, there are terms involving the current carried by hot electrons, Jh . We model 
the evolution of the hot electron population using a particle-in-cell (PIC) approach based on the methods of Birdsall & 
Langdon [9]. The trajectory of the ith individual particle is determined by the Newton–Lorentz force law,

∂pi

∂t
= −e(E + vi × B) (5)

∂xi

∂t
= vi (6)

Note that we are allowing for relativistic particles, so pi = meγivi , where γ −1
i =

√
1 − v2

i /c2 is the particle’s Lorentz 
factor.

Each particle is assigned a weight, wi , such that the sum over all particle weights within a grid cell is equal to the 
average particle density, nh = ∑m

i=1 wi , in that grid cell, where m is the number of particles in that cell. Similarly, the hot 
particle current density contribution is determined by summing over the product of the weights and velocities of particles 
in the cell, Jh = −e 

∑m
i=1 wivi . Note that wi is taken to be a constant in our runs, but it may in principle be allowed to vary.

3. Numerical solution of the EMHD equations

We simulate the evolution of the hybrid EMHD system in a rectangular Lx × Lz domain. We discretize this domain into 
nx × nz grid cells. As shown in Fig. 1, the electric field and cold plasma velocity fields are collocated on the grid corners 
while the magnetic fields are collocated on the cell centers. We approximate all spatial derivatives using second order 
central differences.

3.1. The cold plasma current

Because of the spatial arrangement between the cold plasma velocity and magnetic fields, it is necessary to interpolate 
the magnetic fields before obtaining the fluid velocity from Eq. (3). It should be noted that the use of Ampere’s law implies 
that ∇ · J = ∇ · (Jc + Jh) = 0, but because of the configuration of grid cells, the finite difference approximation does not 
guarantee that this condition will actually be satisfied. Thus we explicitly correct for the possibly divergent part of the 
current in order to maintain quasineutrality:
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