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The objective of this paper is the exposition of a recently-developed, novel Green’s 
function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential 
equations and its application to the modeling of the plasma sheath region around a 
cylindrical conducting object, carrying a potential and moving at low speeds through an 
otherwise neutral medium. The plasma sheath is modeled in equilibrium through the 
GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte 
Carlo based approaches for the solution of nonlinear equations are iterative in nature, 
involving branching stochastic processes which are used to calculate linear functionals of 
the solution of nonlinear integral equations. Over the last several years, one of the authors 
of this paper, K. Chatterjee has been developing a philosophically-different approach, 
where the linearization of the equation of interest is not required and hence there is 
no need for iteration and the simulation of branching processes. Instead, an approximate 
expression for the Green’s function is obtained using perturbation theory, which is used to 
formulate the random walk equations within the problem sub-domains where the random 
walker makes its walks. However, as a trade-off, the dimensions of these sub-domains 
have to be restricted by the limitations imposed by perturbation theory. The greatest 
advantage of this approach is the ease and simplicity of parallelization stemming from 
the lack of the need for iteration, as a result of which the parallelization procedure is 
identical to the parallelization procedure for the GFMC solution of a linear problem. The 
application area of interest is in the modeling of the communication breakdown problem 
during a space vehicle’s re-entry into the atmosphere. However, additional application 
areas are being explored in the modeling of electromagnetic propagation through the 
atmosphere/ionosphere in UHF/GPS applications.
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1. Introduction

The electric force arising out of even a small percentage imbalance of charged particles within plasma environments 
is very strong. Hence, any excess charge is quickly eliminated by particle motion and quasi-neutrality is usually a good 
approximation in relatively high-density, low-temperature plasmas. However, quasi-neutrality does not prevail for ionized 
gases in the vicinity of a solid surface and this non-neutral region is called a plasma sheath [1]. In the next section, we 
provide a simple model for a plasma sheath around a long cylindrical object carrying a potential moving at low speeds in 
neutral medium and derive approximate expressions for the potential in the vicinity of the sheath.

1.1. Electrostatic potential in a plasma sheath

The simplest model for a plasma sheath surrounding a conducting object is the Debye potential for a conducting sphere 
within a plasma region [1–3]. In this work, we adapt this model to problems in cylindrical geometry. The region of interest 
is an infinite domain of neutral medium with a number density of n0, capable of being ionized into electrons and singly 
charged positive ions. An infinitely long conducting cylinder of radius R carrying a potential ϕs is traveling through this 
region at low, non-relativistic speeds. Assuming that the number density of the charged particles surrounding the moving 
cylinder follows the Boltzmann distribution as a function of the potential ϕ , the number densities of ions (ni ) and electrons 
(ne) can be written as

ni(ϕ) = n0e
− qϕ

kB Ti ,

ne(ϕ) = n0e
+ qϕ

kB Te , (1)

with q being the magnitude of the electronic charge, ε0 being the permittivity of free space, kB being the Boltzmann 
constant, and Ti and Te being the ion and electron temperatures respectively. The electric potential ϕ can then be obtained 
from the Poisson’s equation

∇2ϕ = − ρ

ε0
= − q

ε0

[
ni(ϕ) − ne(ϕ)

]
, (2)

and because of the nonlinear potential dependent concentration term on the right side of Eq. (2), this equation is known as 
the nonlinear Poisson–Boltzmann (NPB) equation [1–3]. The linearization of Eq. (2) leads to

∇2ϕ − 1

λ2
D

ϕ = 0, (3)

where

1

λ2
D

= q2n0

ε0kB

(
1

Te
+ 1

Ti

)
, (4)

with λD being referred to as the plasma Debye length. Based on the linearized equation, we define an equivalent tempera-
ture given by

Teq = Te Ti

Te + Ti
(5)

and the Debye length can be expressed in terms of this equivalent temperature as

λD =
√

ε0kB Teq

q2n0
. (6)

For an infinite cylinder, the potential ϕ is dependent only on the radial coordinate and given by the solution of the 
equation

r2 d2ϕ

dr2
+ r

dϕ

dr
− r2 1

λ2
D

ϕ = 0. (7)

The equation above is the modified Bessel equation of order zero where the modified Bessel equation of order ν is given by

r2 d2ϕ

dr2
+ r

dϕ

dr
− (

r2 + ν2)ϕ = 0. (8)

As a result, the solution to Eq. (7) is given by

ϕ(r) = AI0

(
r

λD

)
+ B K0

(
r

λD

)
, (9)
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