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For modeling scalar-wave propagation in geophysical problems using finite-difference 
schemes, optimizing the coefficients of the finite-difference operators can reduce numerical 
dispersion. Most optimized finite-difference schemes for modeling seismic-wave propaga-
tion suppress only spatial but not temporal dispersion errors. We develop a novel 
optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion 
errors not only in space but also in time. Our optimized scheme is based on a new 
stencil that contains a few more grid points than the standard stencil. We design an 
objective function for minimizing relative errors of phase velocities of waves propagating 
in all directions within a given range of wavenumbers. Dispersion analysis and numerical 
examples demonstrate that our optimized finite-difference scheme is computationally up 
to 2.5 times faster than the optimized schemes using the standard stencil to achieve the 
similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order 
finite-difference scheme using the same new stencil, our optimized scheme reduces 50 
percent of the computational cost to achieve the similar modeling accuracy. This new 
optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave 
modeling and inversion.

Published by Elsevier Inc.

1. Introduction

Finite-difference (FD) schemes have been widely used for simulations of wave propagation (e.g., [1]). High-order FD 
schemes are particularly attractive for large-scale 3D modeling, because they are able to control numerical dispersion using 
a larger grid spacing compared with low-order schemes (e.g., [2,3]). The coefficients of high-order FD operators are usually 
determined using the Taylor expansion of the truncation error ε with respect to the grid spacing h such that ε = O (h2M), 
where 2M is the length of the standard FD operator or stencil (e.g., [4]). Equivalently, one may express the phase-velocity 
error εv in terms of the normalized wavenumber “kh” and design the coefficients such that εv = O ((kh)2M) (e.g., [5]), where 
k is the wavenumber. Although very high-order accuracy has been achieved in space, second-order time discretization is 
popular for modeling large-scale wave propagation because of its relatively low requirements of computer memory (e.g., [6]). 
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In the following, we refer the scheme with 2Mth-order accuracy in space and second-order accuracy in time as the standard 
high-order FD scheme.

The numerical solution obtained using a high-order scheme converges rapidly to the true solution when the grid 
spacing h approaches zero. In other words, high-order schemes are excellent at controlling the phase-velocity error for 
low wavenumbers. However, for a given h, high-order schemes do not always sufficiently suppress the error for large 
wavenumbers. One remedy is increasing the length of the FD operator 2M , leading to high computational costs. When 2M
approaches the total number of grid points along one direction, high-order FD schemes essentially become the pseudospec-
tral method [7,8], which is free of numerical dispersion but is computationally expensive.

Holberg [9] introduced an optimized FD scheme to control spatial dispersion errors for a wide range of wavenumbers 
for a given length of the FD operator for numerical modeling of seismic-wave propagation. His objective function for opti-
mization is the maximum relative error of the group velocity. Various optimized FD schemes have emerged since Holberg’s 
pioneering work.

Numerous optimized FD schemes minimize the spatial dispersion error and temporal dispersion error independently (e.g., 
[10–14]). Lele [10] obtained compact FD schemes with spectral-like resolution by imposing the requirement that the discrete 
FD operator matches the spatial differential operator at three prescribed high wavenumbers. Tam and Webb [11] constructed 
a dispersion–relation-preserving (DRP) scheme by optimizing the FD approximations to the spatial and temporal differential 
operators. Bogey and Bailly [12] advanced the DRP scheme using spatial FD operators with a length of up to 13 grid points. 
Hu et al. [13] developed low-dissipation and low-dispersion Runge–Kutta time-advancing schemes. Zhang and Yao [14]
found that the norm of objective functions plays an important role for designing optimized FD schemes. Their schemes 
based on the maximum norm have more flexibility and better accuracy than those in [11,12] based on L2- or L1-norm.

Several optimized FD schemes minimize the spatial dispersion error and temporal dispersion error simultaneously. Haras 
and Ta’asan [15] minimized the global truncation error of the partial differential equation, and demonstrated that their com-
pact FD scheme is more accurate than Lele’s spectral-like scheme in [10] for solving the scalar-wave equation. Etgen [16]
developed an FD scheme to minimize the phase-velocity error. His scheme balances both spatial and temporal dispersion 
errors because the two types of errors have opposite signs. Stork [17] designed spatial FD operators that vary between con-
secutive time steps to reduce dispersion errors. Liu [18] found that minimizing the relative error of the time–space-domain 
dispersion relation can lead to smaller relative errors of the phase velocity, compared to minimizing the absolute error of 
the space-domain dispersion relation. He obtained his globally optimal FD schemes by linearizing an objective function of 
the relative phase-velocity error and solving it using a least-squares approach.

The FD schemes optimized in time–space domain in [9,16–18] are based on the standard finite-difference stencil com-
posed of grid points on the axis along which the spatial derivative is calculated. Liu and Sen [5] demonstrated that 
high-order FD schemes based on the standard 2M-point stencil can reach the 2Mth-order accuracy both in space and time, 
but only along eight directions of wave propagation in 2D and 48 directions in 3D when using wavefields at one time step 
for temporal evolution. The temporal accuracy is still second order along the other propagation directions. As high-order FD 
schemes, optimized schemes based on the standard stencil still have low temporal accuracy when using wavefields at one 
time step for temporal evolution, and a small time interval has to be used to adequately control temporal dispersion errors.

We recently developed a new staggered-grid finite-difference method in the time–space domain to improve the accuracy 
in time [19]. The stencil, same as that for Lax–Wendroff scheme (e.g., [2,20,21]), contains a few additional grid points off 
each axis compared to the standard stencil. Our new FD scheme increases the temporal accuracy from second order to 
fourth order for FD modeling with high-order spatial accuracy. The computer-memory requirement of our FD scheme is 
similar to that of the standard high-order FD scheme with second-order accuracy in time.

In this paper, we develop an optimized staggered-grid finite-difference scheme in the time–space domain based on our 
new stencil for solving 2D and 3D scalar-wave equations. Scalar-wave equations are widely used in important geophysical 
problems, including reverse-time migration [22] and full-waveform inversion [23]. In such problems, the phase error is one 
of the major concerns. Our objective function for optimization is thus the relative error of the phase velocity for waves 
propagating in all directions within a given range of wavenumbers. Our optimized scheme not only suppresses spacial 
dispersion errors for large wavenumbers, but also allows us to use a large time interval and well control time dispersion 
errors. The advantage of using a large time interval for numerical wave modeling highlights the novelty of our FD scheme. 
We preform dispersion analysis for our optimized FD scheme, and use our optimized scheme to conduct numerical modeling 
of scalar-wave propagation in 2D and 3D complex media. Our results demonstrate that the computational efficiency of our 
optimized FD scheme is up to 2.5 times higher than that of the optimized schemes based on the standard stencil for a 
given 2D or 3D modeling problem. Compared with the high-order FD scheme based on the same new stencil, our optimized 
scheme achieves the same modeling accuracy with only a half of the original computational cost.

We design our optimized FD scheme specifically for modeling scalar-wave propagation in geophysical problems, as in 
[9,14,16–18]. The development of the optimized FD schemes in [10–13,15] is motivated by computational fluid dynamics 
(CFD) problems. Although the two types of problems are both governed by hyperbolic equations, they have their own com-
putational challenges for practical applications. For example, the spectrum content of the waves and propagation distances 
may be different. Moreover, different boundary conditions are imposed for geophysical problems and CFD problems. For geo-
physical problems, two types of boundary conditions are usually imposed for the scalar-wave equation: absorbing boundary 
conditions and free-surface boundary conditions (e.g., [1,24]). The former is used to truncate an unbounded domain (the 
Earth) into a bounded one. There have been extensive studies of absorbing boundary conditions for modeling seismic-wave 



Download English Version:

https://daneshyari.com/en/article/518314

Download Persian Version:

https://daneshyari.com/article/518314

Daneshyari.com

https://daneshyari.com/en/article/518314
https://daneshyari.com/article/518314
https://daneshyari.com

