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Water wave propagation in unbounded domains.
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This paper concerns non-reflecting boundary conditions for linearized 2D incompressible,
irrotational, inviscid free surface flows in deep water. The linearization at flat water of
the water wave equation is factored as a product of one-way equations. The one-way
factors involve a nonlocal half derivative in space. They serve to construct essentially non-
reflective and absorbing layers. The one way nature of the equation prevents errors at the
boundary from propagating back and polluting the solution in the interior of the domain.
Two versions of the one-way equations are discussed, with and without additional wave
damping. Numerical results are presented.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Water waves are often studied in unbounded domains. For example, when modeling flow around a vessel on an open
sea, effects from the distant ocean bottom or shorelines are negligible compared to the surface wave-body interactions. To
be able to compute such solutions, the domain first needs to be truncated to a finite size. This is done by introducing an
artificial boundary at some arbitrary, ideally not too large, distance. Boundary conditions are then needed on the artificial
boundary, that mimic the unbounded domain and ideally make the boundary invisible to outgoing waves. This type of
boundary conditions is called absorbing or non-reflecting boundary conditions, and are often nontrivial to formulate. One
may view non-reflecting boundary conditions as compatibility conditions. In general, to make the boundaries transparent
to outgoing waves, one first needs to figure out the structure of those waves, then prescribe conditions that are compatible
with that structure. The details depend on the context. In one dimensional flow, the task is simpler, at least in principle.
Waves move either left or right, either towards or away from the boundary. In multi-dimensional flows, waves may approach
the boundary from infinitely many directions, and absorbing all of then via a small number of boundary statements is often
difficult, impossible, or impractical. One then settles for less than perfect absorption of outgoing waves (see, for example,
[1,2]).

The work in this paper falls somewhere between a one- and two-dimensional flow problem. It concerns two-dimensional
incompressible, irrotational, inviscid free surface flow in deep water, but the problem is reduced to solving an equation
which is one-dimensional in space. In [7], Wu proposes a formulation of the equations that enables establishing finite-time
existence and uniqueness of solutions. It proceeds by mapping the infinitely deep two-dimensional domain into the lower
half plane, and formulates the problem in terms of the horizontal flow velocity on the free surface.

In this work, we construct absorbing boundary conditions for the linearization at zero of the water wave equation. We
use Fourier analysis to identify the structure of left and right moving water waves and derive a one-way version of the
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Fig. 1. The domain of the fluid for the system of equations in (1).

equation, which we implement as an absorbing layer near the artificial computational boundary. The one-way equation
supports the propagation of water waves in one direction. It is a fractional partial differential equation involving a nonlocal
operator corresponding to half a derivative in space. The one way nature of the equation prevents potential errors at the
boundary from propagating back and polluting the solution in the interior of the domain. We demonstrate the efficiency of
the one-way water wave equation in absorbing outgoing waves. Two versions of the one-way equations are presented, with
and without additional wave damping. The present paper forms Part I of a two-part report, and focuses on the derivation of
the one-sided equation used at non-reflecting boundaries. Part II [4] focuses on numerics, and presents efficient numerical
methods for the one-way WWE (15).

This paper is organized as follows: In Sections 2 and 3, we briefly describe the full water wave equation, discuss its
properties, and illustrate some solutions. In Section 4, we derive a one-way version of the equation and analyze its proper-
ties. In Section 5, we implement the one-way equation in an outer layer near the artificial boundary, and demonstrate its
effectiveness in absorbing outgoing waves.

2. The water wave equation

Consider the Euler equations for two-dimensional incompressible irrotational free surface flow:

vt + (v · ∇)v = −(0,1) − ∇p

∇ · v = 0

∇ × v = 0. (1)

Here, v denotes the fluid velocity and p is the fluid pressure, the fluid is of density ρ = 1, and the gravitational field
given by (0,−1). The domain is assumed to be infinitely deep, the top boundary is non-self-intersecting and approaches the
horizontal axis at ±∞ with standard boundary conditions: (i) p = 0 on the free surface; (ii) The free surface is a streamline;
and (iii) |v(x, y, t)| → 0 as |(x, y)| → ∞. The problem set-up is shown in Fig. 1.

In [7], Wu uses conformal mapping to transform the fluid domain to the lower half plane at each time t , and obtains an
equation for the horizontal velocity on the free surface. The vertical velocity on the free surface is related to the horizontal
velocity via a Hilbert transform, and the velocity field below the free surface can be recovered by solving Laplace’s equation
in v with appropriate boundary conditions on the free surface. The reader is referred to [3,7] for the details. In this paper,
we are concerned only with the horizontal velocity on the free surface. It can be shown that the horizontal velocity on the
free surface satisfies an equation of the form

utt + |D|u = g(u, x̃, t). (2)

Here, x̃ represents a parameterization of the free surface, originating from the domain mapping. For convenience, we drop
the ˜ notation, and from now on we write u = u(x, t), where x is related but not identical to the physical x-coordinate.

The function g can be shown to be at least quadratic in u, so that for small u, g =O(u2). In particular, u = 0 is an exact
solution, and neglecting g yields the linearization at that solution.

3. Fourier transforms and the linearization of the WWE

The operator |D| in (2) is defined using the Fourier transform and its inverse,

f̂ (ξ) :=
∞∫

−∞
f (x)e−2π ixξ dx, f (x) :=

∞∫
−∞

f̂ (ξ)e2π ixξ dξ.

Recall that ∂x = iD is the usual derivative operator, so that

D̂ f (ξ) = 2πξ f̂ (ξ), ∂̂x f (ξ) = 2π iξ f̂ (ξ).

In analogy, the expression |D| denotes the operator defined by

|̂D| f (ξ) = |2πξ |̂ f (ξ). (3)
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