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in the fine grid ghost values can produce a finite volume stencil of comparable accuracy
to quadratic interpolation provided the cell volumes are adjusted. The volume of fine cells
expands whereas the volume of neighboring coarse cells contracts. The amount by which
the cells contract/expand depends on whether the interface is a face, an edge, or a corner.

I;Z{:gg;d& It is shown that quadratic or better interpolation is required when the conductivity is
Laplace spatially varying, anisotropic, the refinement ratio is other than two, or when the fine-
Fine-coarse grid interface coarse interface is concave.
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Second order accuracy
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1. Introduction

Elliptic, and in particular Laplace and Poisson type equations arise in many settings, including in reaction-diffusion
problems, in incompressible computational fluid dynamics when computing the pressure, in time dependent heat conduc-
tion problems, and in orthogonal mesh generation algorithms, to name a few applications. Our focus in this article is to
investigate and compare different strategies for discretizing elliptic operators in the context of the block-structured mesh
refinement method [1-8].

The central idea behind block-structured mesh refinement is the partitioning of the domain into logically rectangular
grid patches with different resolutions. Starting with a coarse grid, regions of the computational domain are locally refined,
typically by doubling the resolution. The decision whether or not to refine can be based, for instance, on a local error
estimate of the solution. At any given location, multiple levels of refinement can co-exist; the assembly of meshes forms a
grid hierarchy with the coarsest mesh at the bottom and the finest mesh at the top.

One way to solve locally refined mesh problems is to apply the multigrid method [9,10], which is among the most effi-
cient numerical algorithms available to date to solve large, multi-billion degrees of freedom, elliptic problems [11]. Several
numerical libraries, e.g. Chombo [12], SAMRAI [13], FOSPACK [14], and PARAMESH [15] currently implement the multigrid
algorithm. As an alternate approach, the sparse matrix representation of the operator discretized on the mesh hierarchy can
be constructed and handed over to a matrix solver library such as PETSc [16]. The Chompst [17] library developed by the
authors employs this approach. Chompst leverages the block structured grid data structures of the Chombo library but in
contrast to Chombo, which uses a matrix-free method, Chompst builds a sparse matrix representation of the grid hierarchy.
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Fig. 1. The geometry of a fine-coarse grid interface in one dimension. The interface is shown as a fat vertical line, half way between x; and x}, . The cell
center positions are shown as solid circles. The fine ghost cell center is at distance h away from the last fine grid cell and is shown as an open circle.

The linear interpolation weights at x}ﬁrl are L’r—} and r%l for the fine and coarse cell center locations, respectively. The quadratic interpolation weights are
r—1 20-=1) 8

-/ T T for the cell centers at x =x;_1, x;, and X1, respectively.

Chompst users can then choose among a wide array of solvers available through PETSc, or if they wish, manipulate the
matrix directly, e.g. in order to extract eigenvalues.

Key to assembling the sparse matrix system is the problem of accurately discretizing an elliptic operator in the vicinity
of fine-coarse grid interfaces. A similar problem arises in climate modeling at the atmosphere-ocean interface [18] and in
nuclear fusion modeling at the “core-edge” interface [19]. Typically, each component (e.g. atmosphere and ocean), applies
its own discretization scheme on its own grid, with the grid resolution undergoing a jump at the interface. An inconsistent
operator discretization or a lack of flux conservation may arise at the interface unless special care is taken.

Most reference books on multigrid do not discuss this subject in any great detail, perhaps because they consider fields to
be nodal and the discretization is based on finite differences. Here, our interest lies in applying the finite volume discretiza-
tion where the primary variables are located at cell centers. Although it is known since the work of Forsyth and Sammon
[20] that a cell centered finite volume discretization on non-uniform grids yields the same order of accuracy as nodal finite
difference discretizations, there is no published work to our knowledge that estimates the truncation and solution error of
cell centered schemes for the variety of possible fine-coarse grid interfaces that can arise in two and three dimensions (flat,
L-shaped, corner, etc.).

Martin and Cartwright [21] state that, for Poisson problems, quadratic interpolation is needed at fine-coarse grid inter-
faces in finite volume methods to achieve global second order accuracy (error is ~h?, h being the typical mesh resolution).
In a finite volume discretization, where the degrees of freedom are cell centered and the fine-coarse interface runs along
cell faces, a fine ghost cell is placed equidistant to the last fine cell on the coarse side of the interface (see Fig. 1). The
stencil for the last fine grid cell can be derived by interpolating neighboring coarse and fine cell values at the ghost location
— such a stencil was also derived by Minion [22] in the context of the refined grid MAC projection method when solving the
incompressible Euler equations. Martin and Cartwright recommend the following steps to preserve second order accuracy
in two or more dimensions (see Fig. 4 below). First, quadratic interpolation on the coarse grid plane, which is tangential to
the interface, is applied to obtain the field value at the intersection location of the normal passing through the reference
fine cell and the plane. Second, quadratic interpolation along the normal, involving both the previous intersect point and
fine grid cells, is applied to populate the fine ghost value.

The goal of this article is to investigate different interpolation methods that conserve second order accuracy. To do
so, we will build on the results by Johansen and Colella [23] who show that a first order truncation error at fine-coarse
interfaces can be tolerated provided the fine-coarse interface forms a lower dimensional set. We will show that using first
order interpolation to set the ghost value effectively amounts to charge separation in electrostatic problems and that this
effect can often be cured by redistributing the cell volumes at the fine-coarse interface. Different cell volume correction
factors are derived for D — 1 dimensional (face), D — 2 dimensional (edge), and D — 3 dimensional (corner) interfaces.
However, we also show that there are cases where quadratic interpolation is warranted, e.g. when the interface flux requires
extrapolating coarse grid values. These correspond to the cases where the fine-coarse stencils must be shifted in Refs. [21,
23]. An important, and somewhat surprising result, is that there is no loss of accuracy resulting from extrapolating coarse
grid field values.

This article is organized as follows. In Section 2 we conduct a numerical analysis of the accuracy of quadratic and
linear fine ghost interpolation and compare the so-obtained finite volume discretization schemes with the finite difference
approach. In Section 3 we verify the methodology developed in Section 2. We conclude by listing which cases may or may
not benefit from linear interpolation in Section 4.

2. Stencils at fine-coarse interfaces
Our aim is to derive an accurate discretization of the general, second order, elliptic problem

Lp=ap+V-(K-Vp)=p; xeN (1)

subject to suitable boundary conditions on d42. Here, p is a source, K a symmetric tensor, and « a scalar. The terms p, o,
and K can be spatially varying. Depending on the problem, K may represent a thermal conductivity (in heat propagation)
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