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The demand for accurate and computationally affordable sensitivity and uncertainty
techniques is constantly on the rise and has become especially pressing in the nuclear
field with the shift to Best Estimate Plus Uncertainty methodologies in the licensing of
nuclear installations. Besides traditional, already well developed methods – such as first
order perturbation theory or Monte Carlo sampling – Polynomial Chaos Expansion (PCE)
has been given a growing emphasis in recent years due to its simple application and good
performance.
This paper presents new developments of the research done at TU Delft on such Polynomial
Chaos (PC) techniques. Our work is focused on the Non-Intrusive Spectral Projection
(NISP) approach and adaptive methods for building the PCE of responses of interest.
Recent efforts resulted in a new adaptive sparse grid algorithm designed for estimating
the PC coefficients. The algorithm is based on Gerstner’s procedure for calculating multi-
dimensional integrals but proves to be computationally significantly cheaper, while at the
same it retains a similar accuracy as the original method.
More importantly the issue of basis adaptivity has been investigated and two techniques
have been implemented for constructing the sparse PCE of quantities of interest. Not using
the traditional full PC basis set leads to further reduction in computational time since the
high order grids necessary for accurately estimating the near zero expansion coefficients
of polynomial basis vectors not needed in the PCE can be excluded from the calculation.
Moreover the sparse PC representation of the response is easier to handle when used for
sensitivity analysis or uncertainty propagation due to the smaller number of basis vectors.
The developed grid and basis adaptive methods have been implemented in Matlab as
the Fully Adaptive Non-Intrusive Spectral Projection (FANISP) algorithm and were tested
on four analytical problems. These show consistent good performance both in terms
of the accuracy of the resulting PC representation of quantities and the computational
costs associated with constructing the sparse PCE. Basis adaptivity also seems to make
the employment of PC techniques possible for problems with a higher number of input
parameters (15–20), alleviating a well known limitation of the traditional approach. The
prospect of larger scale applicability and the simplicity of implementation makes such
adaptive PC algorithms particularly appealing for the sensitivity and uncertainty analysis
of complex systems and legacy codes.
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1. Introduction

Present design and engineering processes heavily rely on numerical models in practically all branches of industry. This
is especially true in the nuclear field, where experiments are particularly expensive and therefore computational tools are
often favored. Such simulations are almost naturally augmented by extensive sensitivity and uncertainty (S&U) analysis.
The former provides insight how the model input data affects the computed outputs, hence contributes to a deeper under-
standing of the investigated problem. The latter gives information about the uncertainty of the calculated responses arising
from our incomplete knowledge of the input parameters, therefore is important and necessary to judge the reliability of the
results.

As both the numerical models themselves and the associated S&U analysis techniques are computationally expensive
there is an ever growing demand for the development of more accurate and faster methods. In the nuclear community
this interest only intensified since the licensing of nuclear installations started to shift from conservatism to Best Estimate
Plus Uncertainty methodologies [44]. A number of well-established approaches are already available for performing S&U
analysis. Traditionally a distinction is made between deterministic methods – such as perturbation theory [42], generalized
perturbation theory [14], forward and adjoint sensitivity analysis [20] – and statistical ones based on some form of Monte
Carlo sampling [6]. All these techniques (and many more) are covered extensively in the literature, including quite a few
books as well, just to give two excellent examples the interested reader is referred to the books of Saltelli et al. [37] and
Cacuci et al. [5,7].

In the pursuit for novel S&U analysis methods Polynomial Chaos (PC) techniques have received much attention lately.
In the nuclear community this interest is relatively new [43,10,18,19], in contrast with several other disciplines – such
as engineering mechanics [17] or fluid flow [22,25,46] – where research has been ongoing for a longer time. In simple
terms the essence of PC schemes is nothing more than approximating a model output (i.e. a response of our interest) as a
polynomial function of the model input parameters. Such a function, the Polynomial Chaos Expansion (PCE) of the response
basically constitutes a metamodel of the original problem and can be used to describe the stochastic nature of the output
in terms of its mean value, variance, covariance, distribution, etc. The idea was first introduced by Wiener to represent
Gaussian processes by Hermite polynomials (see [41]), but later it was extended so that other types of stochastic processes
could also be addressed using polynomials of the Askey family in the scope of generalized Polynomial Chaos (gPC) [45,11].

PC methods belong to a wider family of spectral techniques aimed at reconstructing the solution of a stochastic problem
by a Fourier series like expansion [21]. Like any expansion such representation uses basis vectors and expansion coefficients.
The basis vectors are predefined functionals of the random variables representing the stochastic input data, therefore they
are random variables themselves. The expansion coefficients are deterministic and their efficient computation is the main
issue. In traditional PC the basis vectors are multi-dimensional polynomials up to a certain order, hence the method in-
herently contains two limitations. On one hand, responses not smooth enough in the stochastic domain (i.e. being highly
nonlinear in certain input variables) might require high polynomial orders to be properly reconstructed, moreover discon-
tinuous responses are even impossible to represent with polynomials. On the other hand, even if the response is smooth
with respect to all input variables, the PC metamodel is restricted by the predefined order of the expansion and it is difficult
to judge what order is needed for an adequate representation.

The former difficulty can be overcome by employing local basis vectors instead of global polynomials. In multi-element
gPC (ME-gPC) the stochastic space is decomposed into disjoint domains and on each of them polynomials with a local
support are used as basis vectors [39,40]. The multi-element probabilistic collocation method (ME-PCM) is a variant of the
same idea where a separate grid of points is used on each sub-domain of the stochastic space to interpolate the solution
[13,12]. Employing wavelets is another promising method, the basic idea was demonstrated by Le Maître et al. in [23] using
wavelets of the Haar family in the Wiener–Haar expansion, then was generalized in [24]. Ma and Zabaras introduced an
adaptive collocation algorithm in [28] applying piecewise multi-linear hierarchical basis functions with which the response
is interpolated on a locally refined mesh. All these techniques are mainly concerned with problems which experience sharp
changes or discontinuities in the stochastic space. In many engineering problems however such rapid response variations
are not encountered, hence the focus of this paper is on the other limitation associated with PC methods.

The predefined order of a traditional, full PCE confines the dependence of the response to a maximum mixed polynomial
order (and therefore to a maximum order in any of the input variables) and to a maximum dimension, i.e. a maximum
number of interacting parameters. Though the sparsity of effects principle (see [29]) suggests that responses are generally
dominated by only a handful of inputs and low order interactions, usually it is not possible to know a priori what that
polynomial order is and how many interacting parameters there are. Moreover with the increase of input parameters the
full PC basis grows rapidly, hence typically only low order PC expansions of 2nd or 3rd order are used, obviously unable to
catch higher order dependencies and interactions.

These problems can be alleviated by using an adaptively constructed polynomial basis instead of a predefined one. A brief
discussion of such basis adaptivity was already presented by Li and Ghanem in [26], and later essentially the same idea was
revived by Lucor and Karniadakis in [27], both papers dealing with a nonlinear oscillator subject to stochastic excitation. In
these two articles the random variables used in the discretization of the excitation are separated at each time step based on
their linear contribution to the solution (i.e. the norm of their linear component in the PCE) and only the most important
ones are retained to produce the higher-order (nonlinear) terms. Another example of basis adaptivity can be found in the
works of Todor and Schwab [38] and Bieri and Schwab [1], both papers considering elliptic stochastic partial differential
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