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A numerical method for the solution of the elliptic Monge–Ampère Partial Differential
Equation, with boundary conditions corresponding to the Optimal Transportation (OT)
problem, is presented. A local representation of the OT boundary conditions is combined
with a finite difference scheme for the Monge–Ampère equation. Newton’s method is
implemented, leading to a fast solver, comparable to solving the Laplace equation on the
same grid several times. Theoretical justification for the method is given by a convergence
proof in the companion paper [4]. Solutions are computed with densities supported
on non-convex and disconnected domains. Computational examples demonstrate robust
performance on singular solutions and fast computational times.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The Optimal Transportation (OT) problem is a simply posed mathematical problem which dates back more than two
centuries. It has recently led to significant results in probability, analysis, and Partial Differential Equations (PDEs), among
other areas, and the subject continues to find new relevance to mathematical theory and to applications.

However, numerical solution techniques for the OT problem remain underdeveloped relative to the theory and applica-
tions. In this article we introduce a numerical method for the optimal transportation problem, which works by solving
the Monge–Ampère equation, a fully nonlinear elliptic partial differential equation (PDE), with non-standard boundary
conditions. We build on the foundation of the companion paper [4] to produce a new, provably convergent method for
implementing the optimal transportation boundary condition for the Monge–Ampère equation. Extensive computational
results demonstrate that our method correctly and efficiently solves a wide range of challenging examples.

1.1. Optimal transportation and the Monge–Ampère PDE

The OT problem is described as follows. Suppose we are given two probability densities

ρX , a probability density supported on X
ρY , a probability density supported on Y
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where X, Y ⊂ R
n are bounded open sets and Y has to be convex. The source density ρX may be discontinuous and may

even vanish the allowing for the support of the source density to be non-convex. The target density ρY must be strictly
positive and Lipschitz continuous. We discuss further in Section 1.3 the regularity and geometrical assumptions on the
densities and their support.

Consider the set, M, of maps which rearrange the measure ρY into the measure ρX ,

M= {
T : X �→ Y , ρY (T ) det(∇T ) = ρX

}
. (1)

The OT problem, in the case of quadratic costs, is given by

inf
T ∈M

1

2

∫
X

∥∥x − T (x)
∥∥2

ρX (x)dx. (2)

See Fig. 3 for an illustration of the optimal map between ellipses.
Assuming Y is convex and the densities are non-atomic, the OT problem (1), (2) is well-posed [7].
Write ∇u for the gradient, and D2u for the Hessian, of the function u. The unique minimising map, M , at which the

minimum is reached is the gradient of a convex function u : X ⊂ R
d →R,

M = ∇u, u convex : X ⊂ R
d →R,

which is therefore also unique up to a constant. Formally substituting T = ∇u into (1) results in the Monge–Ampère PDE

det
(

D2u(x)
) = ρX (x)

ρY (∇u(x))
, for x ∈ X, (MA)

along with the restriction

u is convex. (C)

The PDE (MA) lacks standard boundary conditions. However, it is geometrically constrained by the fact that the gradient
map takes X to Y ,

∇u( X̄) = Ȳ . (BV2)

The condition (BV2) is referred to as the second boundary value problem for the Monge–Ampère equation in the literature
(see [42]). We sometimes use the term OT boundary conditions.

The numerical approximation of the combined problem (MA), (BV2), (C) is the subject of this work.

1.2. Applications

The Optimal Transportation problem has applications to image registration [28], mesh generation [10], reflector de-
sign [26], astrophysics (estimating the shape of the early universe) [19], and meteorology [14], among others. See the recent
textbook [44] for a discussion of the theory and a bibliography.

The OT problem also has connections with other areas of mathematics. A large class of nonlinear continuity equations
with confinement and/or possibly non-local interaction potentials can be considered as semi-discrete gradient flows, known
as JKO gradient flows [29,39], with respect to the Euclidean Wasserstein distance. The distance is the value function of the
optimal transportation problem. The impediment so far has been the cost of numerical implementation. In one dimension
the problem is trivial and [32] implements JKO gradient flow simulations for nonlinear diffusion. An interesting recent
work [13] considers the two dimensional case. The performance of our solver could offer opportunities for implementing
JKO gradient flows in 2D.

1.3. Weak solutions of the Monge–Ampère equation

The regularity theory for strictly convex Monge–Ampère/OT solutions is well understood and relies on the strict positivity
of the densities together with the convexity of Y ; see the pioneering work of Caffarelli [11] and also [44, Chapter 4]. In this
framework, Brenier solutions are Alexandrov solutions and roughly speaking the potential is twice more regular than the
densities functions, as one would expect for a linear second order PDE.

As explained in Section 2, the convexity of Y is an important assumption for our treatment of the boundary conditions.
However, our finite difference approximation strategy will diverge from the classical regularity theory mentioned above. Our
reformulation of the transport problem (MA), (BV2), (C) indeed fits within the convergence framework [8,37] of degenerate
elliptic viscosity solutions [12]. This will allow for the source density ρX to vanish or even be discontinuous, but we require
Lipschitz continuity on the target density ρY .

Viscosity solutions are less general than Brenier solutions but can still capture interesting (sub)-gradient mappings. In
Section 6.3 we compute the inverse mapping of the famous counter example of Caffarelli where a ball is split into a
non-convex target. Because viscosity solutions allow for non-strictly convex “flat” potentials, the inverse mapping is indeed
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