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This paper describes a novel hybrid method, combining a spectral and a particle method,
to simulate the turbulent transport of a passive scalar. The method is studied from the
point of view of accuracy and numerical cost. It leads to a significative speed up over more
conventional grid-based methods and allows to address challenging Schmidt numbers. In
particular, theoretical predictions of universal scaling in forced homogeneous turbulence
are recovered for a wide range of Schmidt numbers for large, intermediate and small scales
of the scalar.
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1. Introduction

The prediction of the dynamics of a scalar advected by a turbulent flow is an important challenge in many applications.
The scalar field can be used to represent various quantities transported by the flow. In combustion, the mixture fraction is
a conserved scalar used to describe mixing between fuel and oxidizer [1]. The prediction of scalar in environmental flows is
also of great importance [2]. The temperature field is another type of advected scalar which is critical in many applications,
e.g. to simulate the cooling systems used for nuclear reactors [3]. Passive scalars can finally be used to capture interfaces in
multiphase flows [4] or determine the dynamical properties of turbulent flows [5].

A passive scalar, θ , is governed by an advection–diffusion equation,

∂θ

∂t
+ �u · �∇θ = �∇ · (κ �∇θ) (1)

where κ is the molecular scalar diffusivity and �u the flow velocity field. The phenomenology of passive scalar convection–
diffusion depends on the molecular Schmidt number, the viscosity-to-diffusivity ratio, Sc = ν/κ . For turbulent flows, the
Kolmogorov scale, ηK , is defined as the smallest length scale of the turbulent motion. Similarly, for Schmidt numbers higher
than one, the Batchelor scale, ηB , is defined as the smallest length scale of the scalar fluctuations. The Batchelor and Kol-
mogorov scales are related by ηB = ηK /

√
Sc.

The Batchelor scale is thus smaller than the Kolmogorov scale. This means that, for Schmidt number larger than one,
scalar dynamics can occur at scales smaller than the smallest velocity eddy, and therefore requires important computational
resources. Donzis et al. [6] performed DNS of turbulent transport by means of pseudo-spectral methods using up to 4096
modes in each direction to study universal scaling laws of a passive scalar.

* Corresponding author.

0021-9991/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcp.2013.12.026

http://dx.doi.org/10.1016/j.jcp.2013.12.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://dx.doi.org/10.1016/j.jcp.2013.12.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2013.12.026&domain=pdf


128 J.-B. Lagaert et al. / Journal of Computational Physics 260 (2014) 127–142

In the above reference the same grid resolution and numerical method are used for the momentum and the scalar
equations. The two-scale nature of turbulent scalar transport, however, makes it natural to use different grids and different
numerical methods for the scalar and the momentum. In a recent work, Gotoh et al. [7] describe a hybrid method combining
a spectral method for the Navier–Stokes equation and compact finite-difference schemes for the scalar advection. This hybrid
method is validated and applied for simulations of decaying turbulence at Schmidt numbers of 1 and 50. Significant gains
were obtained in comparison with methods using spectral discretizations for both the momentum and the scalar.

For large Schmidt numbers, the scalar dynamics is essentially governed by advection, a regime for which Lagrangian
or semi-Lagrangian methods are ideally suited. An important feature of these methods, which makes them particularly
appealing in the case of high Schmidt numbers, is that they are stable under conditions that are related to the flow strain
and not to the grid-size. In practice this means that the time-step used for the scalar equation will depend on the grid
resolution used for the momentum equation even if a much finer grid is used for the scalar. Inspired by this observation,
we proposed in [8] to couple semi-Lagrangian particle methods at different grid-resolutions for both the scalar transport and
the Navier–Stokes equations. This reference provides a proof of concept that scalar spectra and structures are resolved with
the same accuracy and much less computational effort in a hybrid method using a coarse resolution for the momentum
than in a fully resolved high resolution method. This work was pursued in [9], to investigate the universal laws for large,
intermediate and small scales of the scalar for Reynolds numbers (based on the Taylor micro-scale) between 80 and 160
and Schmidt numbers between 0.7 and 16. In this reference, a particle method for the scalar equation was coupled with a
pseudo-spectral method for the Navier–Stokes equations.

The purpose of the present paper is to describe and validate the hybrid spectral-particle numerical approach used in [9],
and to discuss its efficiency, in particular in comparison with fully resolved methods using spectral discretizations for both
the scalar and momentum equations, and with the hybrid method proposed in [7].

An outline of this paper is as follows. In Section 2, we describe the semi-Lagrangian particle method used for the scalar
equation, the pseudo-spectral method used for the momentum equation and the coupling strategy. We also indicate the
approach to run the hybrid method on massively parallel machines. In Section 3, we test our method in decaying turbulence
experiments similar to those in [7] and discuss its accuracy, cost and overall efficiency. In Section 4, we apply our method
to investigate the physics of turbulent transport in forced homogeneous turbulence over a wide range of Schmidt numbers.
Section 5 is devoted to concluding remarks and future directions that we are currently exploring.

2. Hybrid spectral-particle method

In this section we first describe the particle method used to solve the scalar equation, then the pseudo-spectral method
used for the Navier–Stokes equation and the coupling strategy. We also explain our strategy to optimize the parallel perfor-
mance of the hybrid method.

2.1. Semi-Lagrangian particle methods

The principle of particle methods for the advection of a given quantity is to concentrate this quantity on a set of par-
ticles and to follow these particles with the advection field. These methods are conservative by nature and free of CFL
stability conditions. Continuous fields or grid values are recovered from the particles by mollification or interpolation [10].
The numerical analysis of these methods shows that a strong strain in the advection field can create distortions in the
particle distribution and deteriorate the accuracy of the method. To overcome this difficulty, it is common practice to
remesh particles on a regular grid through interpolation [11,10]. In the context of the advection of a vorticity field to
solve the incompressible Navier–Stokes equation in vorticity form, these methods have been validated against spectral or
finite-difference methods and applied in bluff body flows [11–14], in homogeneous decaying turbulence [15] and in vortex
dynamics [16,17]. In the context of scalar advection they have been used for Lagrangian discretizations of level set methods
[18–20] and for the determination of Lyapounov exponents of flow maps [5].

When particles are remeshed at every time-step, which is often the case in practice, one obtains a class of conservative
semi-Lagrangian methods that can be analyzed as CFL-free finite-difference methods [20]. Remeshing is performed through
interpolation. In one dimension it can be expressed by the following formula:

θi =
∑

p

θpΛ

(
xi − xp

�xθ

)
,

where Λ is the interpolation kernel, xi denote the grid points and xp the particle locations after advection. The summation
concerns particles which belong to the support of the kernel around a given grid point. In the present paper, particles are
advected by a second order Runge–Kutta scheme and we use the following kernel, derived in [19],

Λ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
12 (1 − |x|)(25|x|4 − 38|x|3 − 3|x|2 + 12|x| + 12) if 0 � |x| < 1
1

24 (|x| − 1)(|x| − 2)(25|x|3 − 114|x|2 + 153|x| − 48) if 1 � |x| < 2
1

24 (3 − |x|)3(5|x| − 8)(|x| − 2) if 2 � |x| < 3

0 if 3 � |x|.

(2)
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