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Modern least squares finite element method (LSFEM) has advantage over mixed finite
element method for non-self-adjoint problem like Navier–Stokes equations, but has
problem to be norm equivalent and mass conservative when using C0 type basis. In
this paper, LSFEM with non-uniform B-splines (NURBS) is proposed for Navier–Stokes
equations. High order continuity NURBS is used to construct the finite-dimensional spaces
for both velocity and pressure. Variational form is derived from the governing equations
with primitive variables and the DOFs due to additional variables are not necessary. There
is a novel k-refinement which has spectral convergence of least squares functional. The
method also has same advantages as isogeometric analysis like automatic mesh generation
and exact geometry representation. Several benchmark problems are solved using the
proposed method. The results agree well with the benchmark solutions available in
literature. The results also show good performance in mass conservation.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Least squares finite element method (LSFEM) has several advantages over classical Galerkin type finite element method
in numerical solution of Stokes or Navier–Stokes equations [1]. Most notably, inf–sup (also known as LBB [2]) conditions are
satisfied naturally, hence one can use equal order interpolation for velocity and pressure. Furthermore, the resulting algebra
system always has a symmetric positive definite (SPD) coefficient matrix even for non-self-adjoint problems. Such linear
equations can be efficiently solved by iterative method like preconditioned conjugate gradient. As a result, LSFEM has drawn
considerable attention in the past few years [3].

The idea of LSFEM is to minimize unconstrained convex least squares functional defined as the sum of the governing
equations residuals measured in some norm (mostly L2). It is crucial to define a functional which can induce an equivalent
energy norm to H1 norm in the design of LSFEM [4,5]. When the functional is norm equivalent, the numerical solution
can be interpreted as the orthogonal projection with respect to H1 norm and is optimally accurate in H1 norm. But norm
equivalence generally involves C1 continuous finite element space which is considered as the major drawback of LSFEM
compared with weak Galerkin formulation.

Motivated by using C0 element, the governing equations are recast as first order system by introducing auxiliary variables
in modern LSFEM. For Stokes or Navier–Stokes equations, the most popular choice is velocity–vorticity–pressure formulation.
This is first presented by Jiang [1,6] and also studied by Bochev [3–5,7], Pontaza [8,9] and Ozcelikkale [10], etc. There
is only one additional variable in 2D case; but three additional variables are necessary in 3D case. Another choice is to
introduce stress as independent variable and leads to velocity–stress–pressure formulation [11,12]. There are three additional
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variables for 2D case, and six for 3D case in this formulation. The third choice is to introduce velocity gradient which
leads to velocity–gradient–velocity–pressure formulation suggested by Cai [13] and Bochev [14,15]. There are four additional
variables for 2D case, and nine for 3D case in this formulation.

Each of the three formulations has some disadvantages in norm equivalence. Although the vorticity based formulation
has wide acceptance in LSFEM, it fails to define norm equivalent functional for particular sets of boundary conditions
[4,5]. The stress based formulation is always not norm equivalent, no matter of what kind of boundary conditions. For
velocity gradient based formulation, a norm equivalent functional can be defined if the entries of the velocity gradient are
constrained by incompressibility constraint. However this is only appropriate for Stokes equations, and cannot be extended
to the Navier–Stokes equations. To achieve norm equivalent, there are some other efforts in literature such as weighted
LSFEM [5,16], negative norm LSFEM [17,18], FOSLL∗ [19–21]. All of these methods have some successful application but not
widely used.

The loss of norm equivalence is a result of exclusion of C1 type element. The studies on C1 type LSFEM are rare in
literature considering the difficulty and complexity. J.P. Pontaza and J.N. Reddy [8] implement C1 practicality in the following
two ways; one is using tensor products of one-dimensional C1 basis, the other is using discontinuous least squares functional
where non-conformal finite element spaces are taken and the jump of velocity and pressure are minimized in least squares
sense. However the former is sensitive to mesh distortion, and the latter lead to discontinuous velocity and pressure field.

In this paper we use non-uniform B-spline (NURBS) to achieve C1 regularity across inter-element boundaries. NURBS is
the standard and well studied tool in computer aided geometry design (CAGD) [22–24] where geometry is represented by
a linear combination of independent NURBS basis. This is similar to what is done in FEM/LSFEM where unknown field is
represented by a set of piecewise polynomials. The most significant difference between NURBS basis and piecewise polyno-
mials is that, with NURBS basis, high order inter-element continuity can be achieved in an easy way. So the requirement
of C1 regularity can be fulfilled by introducing NURBS basis in LSFEM, and a norm equivalent functional can be defined.
Actually the continuity of NURBS is controllable by stable and efficient order elevation algorithm [24].

We adopt the idea proposed by Hughes et al. [25,26] that is the domain and unknown fields are represented by the same
basis, namely NURBS. It is analogous to isoparametric concept in FEM/LSFEM and referred as Isogeometric analysis (IGA).
We name the least squares method with NURBS basis as Least Squares Isogeometric Analysis (LSIGA). NURBS is preferred to
B-spline because shapes like circle, parabola and hyperbola can be represented exactly which are common in applications.
There are some other gains beside norm equivalence. Mesh can be generated and refined automatically during analysis
by knot insert algorithm [24] which is most attractive for adaptive methods and design optimization. There is a novel
k-refinement method other than h-refinement method and p-refinement method which consists of increasing continuity of
basis function and is proved to be more efficient [27,28].

The paper is outlined as follows. The least squares formulation with primitive variables for Navier–Stokes equations is
given in Section 2. Finite-dimensional spaces with NURBS are constructed for 2D problems in Section 3. The method is
verified by some benchmark problems in Section 4. We draw the conclusion in Section 5.

2. Least squares formulation for Navier–Stokes equations

2.1. The incompressible Navier–Stokes equations

Let Ω ⊂ R
d be an open bounded region, where d = 2 or 3 is space dimension; and Ω̄ = Ω ∪ ∂Ω be the closure of Ω ,

where ∂Ω = Γ is the boundary of Ω . Let x be a point in Ω̄ which has 2 or 3 components written as (x, y) or (x, y, z).
The Navier–Stokes equations that govern viscous incompressible flow in Ω are specializations of momentum and mass
conservation, written as:

−ν�u + u · ∇u + ∇p = f x ∈ Ω, (1)

∇ · u = 0 x ∈ Ω, (2)

where u, p, and f are velocity, pressure, and body force respectively. ν is viscosity coefficient of fluid.
It is considered the inhomogeneous velocity boundary condition

u = g x ∈ Γ, (3)

and zero mean pressure constraint∫
p dΩ = 0. (4)

Mean pressure constraint is necessary because the pressure is unique up to an additive constant. The other way to fix
the constant is specify a reference pressure at one point.

2.2. Least squares formulation

In the following, we utilize the standard notation and definition for the Sobolev spaces H s(Ω) and Hs(Γ ), where s � 0.
The corresponding inner products are denoted as (·,·)s,Ω and (·,·)s,Γ ; similarly the corresponding norms are denoted as
‖ · ‖s,Ω and ‖ · ‖s,Γ respectively. The product spaces Hs(Ω) = [Hs(Ω)]n , where n is the number of dependent variables, are
constructed in the usual way.
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