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High-order finite difference methods are efficient, easy to program, scale well in multiple
dimensions and can be modified locally for various reasons (such as shock treatment for
example). The main drawback has been the complicated and sometimes even mysterious
stability treatment at boundaries and interfaces required for a stable scheme. The research
on summation-by-parts operators and weak boundary conditions during the last 20 years
has removed this drawback and now reached a mature state. It is now possible to con-
struct stable and high order accurate multi-block finite difference schemes in a systematic
building-block-like manner. In this paper we will review this development, point out the
main contributions and speculate about the next lines of research in this area.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The research on Summation-By-Parts (SBP) schemes was originally driven by applications in flow problems, including
turbulence and wave propagation. The objective was to use highly accurate schemes to allow waves and other small features
to travel long distances, or persist for long times. One of the ground-breaking papers showing the benefit of high-order
finite-difference methods for wave propagation problems is [1]. However, it has until recently proven difficult to show the
same benefit in realistic simulations. Although it is easy to derive high-order finite difference schemes in the interior of
the domain, it is non-trivial to find accurate and stable schemes close to boundaries. Furthermore, complicated geometries
necessitate multi-block techniques. This poses yet another challenge for high-order finite difference schemes since solutions
in different blocks must be glued together in a stable and accurate way. The stencils near boundaries and block interfaces
create difficulties. We will focus on the so-called Simultaneous-Approximation-Term (SAT) technique where the boundary
and interface conditions are imposed weakly.

The fundamental idea of SBP-SAT schemes is to allow proofs of convergence for linear and linearized problems. Con-
vergence proofs form the bedrock of numerical analysis of PDEs since they provide the mathematical foundation that gives
credibility to a numerical simulation. Without a proof of convergence, there is no guarantee that the numerical solution has
any value at all. The confidence that a discrete solution is an approximation of the true mathematical solution is crucial,
not only in practical engineering simulations, but also for the possibility to evaluate the accuracy of the model (i.e. the
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governing equation) itself and propose improved models. Without this quality assurance it is impossible to distinguish
between modeling errors and numerical errors.

The SBP finite difference operators were first derived in [2,3] and approximate coefficients calculated. In [4], the analysis
was revisited and exact expressions for the finite difference coefficients were obtained. However, the SBP finite difference
operators alone, only admit stability proofs for very simple problems, and the use was limited. This changed with [5] when
Simultaneous Approximation Terms were proposed to augment SBP schemes. These are penalty-like terms that enforce
boundary conditions weakly. With both SBP operators and the SAT technique at hand, stability proofs for more complicated
systems of partial differential equations (PDEs) were within reach.

Finite difference methods are by no means the only choice of high-order schemes. There are numerous other high-
order methods with different strengths and weaknesses. However, finite difference schemes are often favored in cases
where curvilinear multi-block grids can be generated, due to simpler coding and more efficient use of computer resources.
For aerodynamic applications where most of the surface of the aircraft is smooth, this methodology is especially suitable
since i) curvilinear grids can be generated, and ii) the resolution of large normal-to-surface gradients force the use of
structured grids anyway. For very complicated geometries (such as close to landing gears), one can use hybrid methods (a
combination of high-order finite differences and an unstructured method) as will be discussed below. Hybrid methods are
also preferable in situations where waves propagate in free space after being generated by complicated geometrical features.

In this article, we will review the progress made towards stable high-order finite difference schemes for fluid dynamics as
well as other applications. To this end, we will briefly explain the basic principles in a few examples. We will also discuss
the SBP-SAT interpretation of other schemes and recent extensions of SBP-SAT schemes for time integration, non-linear
theory and shock capturing.

The article is organized as follows. In Section 2, we present the theory for linear initial–boundary-value problem. We in-
troduce the SBP-SAT concepts via a number of examples in Sections 3.1, 3.2 and 3.3. In Section 3.4 we discuss convergence
rates and in Section 3.5 alternative ways to impose boundary conditions. In Sections 3.6 and 3.7 we explain the SBP-SAT
method in a 2-D example. In Section 3.8 we discuss aspects of the time evolution of the discrete system and in Section 3.9
we review results regarding dual consistency. In Section 4 we relate the SBP theory for finite difference schemes to other
numerical methods. Section 5 contains a review of the various applications where SBP-SAT schemes have been used to
obtain numerical approximations. Finally, we discuss some aspects of non-linear theory in Section 6.

2. Theory for initial boundary value problems

We begin by reviewing the general theory for Initial–Boundary-Value Problems (IBVP). Most of the material in this
section can be found in [6]. This sets the scene for the subsequent sections focusing on SBP-SAT schemes.

2.1. Preliminaries

Consider the initial–boundary-value problem

ut = P (x, t, ∂x)u + F , 0 � x � 1, t � 0,

u(x,0) = f (x),

L0(t, ∂x)u(0, t) = g0(t),

L0(t, ∂x)u(1, t) = g1(t),

(1)

where u = (u1, . . . , um)T and P is a differential operator with smooth matrix coefficients. L0 and L1 are differential operators
defining the boundary conditions. F = F (x, t) is a forcing function.

Definition 2.1. The IBVP (1) with F = g0 = g1 = 0 is well-posed, if for every f ∈ C∞ that vanishes in a neighborhood of
x = 0,1, it has a unique smooth solution that satisfies the estimate

∥∥u(·, t)
∥∥ � K eαct‖ f ‖ (2)

where K ,αc are constants independent of f .

A problem is well-posed if it satisfies an estimate like (2). This require that appropriate boundary conditions are used
which, along with the estimate, guarantees that a unique smooth solution exists. The extension to inhomogeneous boundary
condition is possible via a transformation ũ = u − Ψ where Ψ (x,0) = f (x) and Ψ ({0,1}, t) = g0,1 such that ũ satisfies (1)
with homogeneous data (and a different but smooth forcing function). However, to obtain Ψ , g0,1 is required to be differ-
entiable in time. This requirement is not necessary if the problem is strongly well-posed as defined below.
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