
Journal of Computational Physics 268 (2014) 63–83

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Computation of Maxwell singular solution by
nodal-continuous elements

Huo-Yuan Duan a, Roger C.E. Tan b, Suh-Yuh Yang c,∗, Cheng-Shu You c

a Collaborative Innovation Centre of Mathematics, School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
b Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Singapore
c Department of Mathematics, National Central University, Jhongli City, Taoyuan County 32001, Taiwan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 May 2013
Received in revised form 5 January 2014
Accepted 28 February 2014
Available online 12 March 2014

Keywords:
Maxwell’s equations
Singular and non-H1 solution
L2 projection
Nodal-continuous element
Interface problem
Eigenvalue problem

In this paper, we propose and analyze a nodal-continuous and H1-conforming finite
element method for the numerical computation of Maxwell’s equations, with singular
solution in a fractional order Sobolev space Hr(Ω), where r may take any value in the most
interesting interval (0,1). The key feature of the method is that mass-lumping linear finite
element L2 projections act on the curl and divergence partial differential operators so that
the singular solution can be sought in a setting of L2(Ω) space. We shall use the nodal-
continuous linear finite elements, enriched with one element bubble in each element, to
approximate the singular and non-H1 solution. Discontinuous and nonhomogeneous media
are allowed in the method. Some error estimates are given and a number of numerical
experiments for source problems as well as eigenvalue problems are presented to illustrate
the superior performance of the proposed method.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In electromagnetism, the governing spatial partial differential operators are mainly the curl operator and the divergence
(div) operator. As a mathematical foundation of electromagnetism, the well-known Maxwell’s equations are the set of partial
differential equations in terms of such two operators [15]. In general, these two characteristic operators behave rather
differently from the gradient operator, although they are closely related with the latter. In fact, whenever the physical
domain is nonsmooth, with re-entrant corners and/or edges on the boundary, the former would lead to singular solution
of not being in the Sobolev space H1(Ω), which is a Hilbert space of square integrable functions as well as the gradients.
As a matter of fact, the singular solution belongs to a fractional order Sobolev space Hr(Ω) only, where the index r which
stands for the regularity of the solution may take any value in the real interval (0,1). The Hr(Ω) space is an intermediate
between the L2(Ω) space and the H1(Ω) space, where the L2(Ω) space is a Hilbert space of square integrable functions.
This case with singular solution is also particularly relevant in discontinuous, anisotropic and nonhomogeneous media. In
most cases, the regularity of Maxwell’s solution is the one of the solution of the elliptic problem of Laplacian minus one,
while the latter is well known in [33] to be less than two on nonsmooth domains (say, nonconvex polygons), so that the
former is less than one. For more details, we refer the readers to, e.g., [2,19,22–24] and the references cited therein.
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For such a low regularity solution, it is well known that the classical nodal-continuous finite element method fails in
the plain curl/div formulation. The failure exhibits an incorrect convergence. In other words, the finite element solution
converges, but it does not converge to the true solution in Hr(Ω) space with r < 1, but to a member of H1(Ω) space
instead; see [4,10,36,40]. Such a strange phenomenon had been puzzling to the community of both mathematicians and
engineers for a long while. Especially, an attempt is in vain to capture the unbounded singularity of the solution by using
more elements and finer meshes near the re-entrant corners where the singularity takes place. It turns out that, for r < 1,
the H1(Ω) space is not dense in Hr(Ω) under the plain curl/div formulation. That is to say, the plain curl/div formulation
accounts for the failure. Actually, the plain curl/div formulation would result in a Dirichlet integral formulation for any H1

functions (cf. Remark 2.1 below). The Dirichlet integral of the nodal-continuous (and H1-conforming) finite element solution
would enforce a convergence to a member of H1(Ω) space; see [3,4,7,9,12,18,35].

This fact directs the way out to the modification of the plain curl/div formulation. Indeed, if the nodal-continuous finite
element problem is properly formulated, a correct approximation can be achieved. However, unexpectedly, until the last
decade, several theoretically and numerically successful nodal-continuous finite element methods have been available, such
as the weighted method [21], the H−1 least-squares method [6,8,11], the weighted dual-potential least-squares method
[39], the weighted mixed method [14], and the L2 projection method [25,26,28,29,27]. These methods were designed for
different models from electromagnetism. The central idea for all these is to modify the plain curl/div formulation in either
the continuous stage or the discrete stage. The resultant modification can reduce or even remove the actions on the solution
from the curl and the div partial derivatives. With the effects from the curl and the div operators being weaken, the
nodal-continuous finite element solution could correctly converge to the true and singular solution. Note that, the resultant
curl/div formulation with the modifications will no longer lead to a Dirichlet integral (cf. Remark 2.1 below), even if the
finite element function is nodal-continuous and H1-conforming.

In this paper we shall propose a generalization of the L2 projection method to Maxwell’s equations in two-dimensional
bounded domain Ω , of the form

curlμ−1 curl u − ε∇ divεu − λεu = εf. (1.1)

The coefficients μ and ε may be discontinuous, anisotropic and nonhomogeneous, and the domain Ω may be nonsmooth
with re-entrant corners and/or edges on the boundary. For such a system of Maxwell’s equations, the solution may not have
the H1-regularity. The key technique is still to apply finite element L2 projections to the curl and div operators, so that the
solution can be sought in a setting of L2(Ω) space. In essence, this type of L2 projections mimics the distributional partial
derivatives in the finite element spaces. Thus, the partial derivatives of the curl and div operators are transferred to the test
functions. As is well known (see [16,17]), the nodal-continuous finite element space is dense in any L2(Ω) space and even
in any L1(Ω) space (a Sobolev space of Lebesgue integrable functions). Consequently, we can expect that the underlying
nodal-continuous finite element method could produce an approximation of the singular solution in Hr(Ω) with r < 1. Note
that the Hr(Ω) space is a trivial subspace of the L2(Ω) space.

In the present paper, we develop this new nodal-continuous finite element method for (1.1) with suitable boundary
conditions. In addition to the introduction of the mass-lumping linear finite element L2 projections to the curl and div
operators, we shall employ the nodal-continuous linear elements, enriched with one element bubble in each element (see,
e.g., [30,31,37] and the references cited therein). We should remark that this approach is essentially a three-node nodal-
continuous linear finite element method, since the element bubbles can be eliminated statically in advance (cf. Appendix A).
As will be seen from a number of numerical experiments, this new method is capable of approximating the singular solu-
tion in Hr(Ω) space, where r can be any value in the most interesting interval (0,1). The new method is also suitable for
discontinuous and nonhomogeneous media. In such cases, the solution would be prevalently more singular. In general, only
some piecewise Hr -regularity can be available. We will provide error estimates for the case λ < 0, in which convergence
and error bounds are established in the L2 norm. This case was not dealt with before and the argument for this case can
embody the most essential ingredients of the theory of the L2 projection method.

Finally, we emphasize that there are many essential differences between the present nodal-continuous finite element
method and our previous works [25–29]. In [25], we adopted local L2 projections for both curl and div operators and
Maxwell’s solution is required to lie in Hr(Ω) for r > 1/2. The work [28] studies discontinuous media, adopting local L2

projection for curl operator while mass-lumping L2 projection for div operator. Again, the regularity r > 1/2 of Maxwell’s so-
lution is necessary in the error analysis. In addition, [27] focuses on the homogeneous media and [26] studies the first-order
curl–div magnetostatic problem with continuous media. Notice that most of the above-mentioned works did not consider
the associated eigenproblems. In contrast, [29] is devoted to study the eigenproblems, using local L2 projections for both
div and curl operators. However, the method in [29] still requires the singular eigenfunctions lying in Hr(Ω) for r > 1/2
and the discontinuous media are not studied.

The remainder of this paper is organized as follows. In Section 2, we recall the continuous problem in curlcurl–graddiv
form, together with the plain curl/div variational formulation. Several representative models from computational electro-
magnetism are also briefly reviewed. The nodal-continuous finite element method is defined in Section 3, where two
mass-lumping L2 projections and the nodal-continuous finite element spaces are introduced. Error estimates for the case
λ < 0 are provided in Section 4. Numerical results are presented in Section 5, with applications to the source and eigen-
value problems of Maxwell’s equations, in homogeneous as well as discontinuous nonhomogeneous media. Finally, some
concluding remarks are given in Section 6.
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