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The paper investigates the use of low-diffusion (contact-discontinuity-resolving) approxi-
mate Riemann solvers for the convective part of the Reynolds-averaged Navier–Stokes
(rans) equations with Reynolds-stress model (rsm) for turbulence. Different equivalent
forms of the rsm–rans system are discussed and classification of the complex terms in-
troduced by advanced turbulence closures is attempted. Computational examples are pre-
sented, which indicate that the use of contact-discontinuity-resolving convective numerical
fluxes, along with a passive-scalar approach for the Reynolds-stresses, may lead to unphys-
ical oscillations of the solution. To determine the source of these instabilities, theoretical
analysis of the Riemann problem for a simplified Reynolds-stress transport model-system,
which incorporates the divergence of the Reynolds-stress tensor in the convective part of
the mean-flow equations, and includes only those nonconservative products which are
computable (do not require modelling), was undertaken, highlighting the differences in
wave-structure compared to the passive-scalar case. A hybrid solution, allowing the com-
bination of any low-diffusion approximate Riemann solver with the complex tensorial
representations used in advanced models, is proposed, combining low-diffusion fluxes for
the mean-flow equations with a more dissipative massflux for Reynolds-stress-transport.
Several computational examples are presented to assess the performance of this approach,
demonstrating enhanced accuracy and satisfactory convergence.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Current trends in rans cfd (Reynolds-averaged Navier–Stokes computational fluid dynamics) for complex aircraft con-
figurations [1] aim at developing methods of high predictive accuracy [2]. From a turbulence modelling point-of-view, this
requires the combination of advanced anisotropy-resolving closures [3] for the Reynolds-stresses (which appear in the av-
eraged mean-flow equations) with transport-equation closures for transition [4]. Regarding the fully turbulent part of the
flow model, differential second-moment closures (smcs) or synonymously Reynolds-stress models (rsms) have the advan-
tage of treating terms representing the influence of turbulence on the mean-flow (ρ̄ri j := ρu′′

i u′′
j , where ρ is the density,

ui are the velocity components in the Cartesian system with space-coordinates xi , ·̄ denotes Reynolds-averaging, and ·′′
denotes Favre fluctuations) as variables of the system of pdes describing the flow, in this way transferring the drawbacks
of a posteriori performance of algebraic closures [5] to other correlations appearing in the Reynolds-stress model (veloc-
ity/pressure-gradient Πi j := −u′

i∂x j p′ − u′
j∂xi p′ where p is the pressure and ·′ denotes Reynolds fluctuations, diffusion by
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triple velocity-correlations d(u)
i j := −∂x�

ρu′′
i u′′

j u′′
� where repeated indices imply the Cartesian-tensor summation convention

[6, pp. 644–645], anisotropy of the rate-of-dissipation tensor εi j − 2
3 εδi j where ε := 1

2 ε�� is the dissipation-rate of turbulent
kinetic energy and δi j is Kronecker’s δ [7, p. 10]). On the other hand, the numerically reassuring concept of eddy-viscosity,
which introduces only minor modifications in the mean-flow equations, is lost. Incidentally, eddy-viscosity is not a physically
definable quantity in general inhomogeneous flows with complex strains.

Most rsm–rans solvers, both structured [8–10] and unstructured [11,12], apply variables-reconstruction [13] to define
left (l) and right (r) states at cell-interfaces [14], which determine fluxes by the approximate solution of the correspond-
ing Riemann problem [15]. We loosely include in the term approximate Riemann solver (ars) different approaches used in
defining the numerical flux, i.e. approximate Riemann solvers [16,17], flux-difference-splitting [18], and flux-splitting [19,
20]. Early results on laminar boundary-layer flow [21] using O (��) reconstruction (�� is the largest distance between the
vertices of the grid-cell), have shown that some fluxes are more dissipative than others, in the sense that they introduce
more numerical diffusion, especially in flows dominated by shear (boundary-layers, jets and wakes). It is well known [22,
23] that high-order reconstruction of low-level (diffusive) fluxes results in high-order-accurate schemes. Therefore, differ-
ences between fluxes observed for O (��) reconstruction are less pronounced when higher-order reconstruction is used, but
may influence the rate of grid-convergence with grid-refinement. The improvement in flow prediction by using numerical
fluxes which correctly resolve contact-discontinuities of the associated Riemann problem was demonstrated by the con-
struction of the hllc ars [17], compared to the hll ars [16]. Batten et al. [24] categorize approximate Riemann solvers
with respect to the fidelity with which they reproduce the structure of the solution of the Riemann problem. From this
point-of-view, 4-state solvers for the Euler equations, like the hllc ars [17] with appropriate choice of the wavespeeds [25],
are obviously contact-discontinuity-resolving. This analysis cannot be applied to all types of fluxes (e.g. flux-splitting [19,
20]). In a more general context, the term contact-discontinuity-resolving follows from the work of Liou [26], who suggested
a rigorous definition of what is meant by low-diffusion numerical fluxes. Consider the Euler equations [15, pp. 102–111],
with conservative variables ue := [ρ,ρu,ρv,ρw,ρet]t and flux �F

e
(u) · �en in the direction of the unit-vector �en , for which

the numerical dissipation of the massflux F num

ρ (ul

e
, ur

e
; �en), defined with respect to an average flux F avg

ρ (ul

e
, ur

e
; �en) [27],

1
2Dρ(ul, ur; �en) := F avg

ρ − F num

ρ [27, (28), p. 5], is expanded as Dρ = Dρ,ρ�lrρ +∑3
�=1 Dρ,��lru� + Dρ,p�lr p with re-

spect to the differences �lr(·) := (·)r − (·)l of the primitive variables ve := [ρ, u, v, w, p]t . By [26, Lemma 1, p. 633],
the necessary and sufficient condition for a numerical flux to give the exact solution of the Riemann problem across a
contact-discontinuity moving with speed Un in the direction �en (Vnl

= Vnr
, pl = pr , ρl �= ρr), is Dρ,ρ = |Un|. Liou’s condi-

tion [26, Lemma 1, p. 633] implies that the numerical massflux-dissipation at a stationary contact-discontinuity should be
�lrρ-independent.

In one of the earliest implementations of compressible rans equations with rsm closure, Vandromme and Ha Minh [28]
used the explicit-implicit MacCormack scheme [29], which is centred, in the sense that no preferential directions are iden-
tified with reference to the wave-structure of the Riemann problem [15], and O (��2). The mean-flow energy variable was
the Favre-averaged total internal energy (ẽt := ẽ + 1

2 ũi ũi +k, where e is the internal energy, ·̃ represents Favre-averaging [30,

31], k := 1
2 ũ′′

i u′′
i is the turbulent kinetic energy associated with Favre fluctuations of the velocity-components). The so-called

isotropic effective pressure p̄ + 2
3 ρ̄k was included [28] in the convective fluxes, while the anisotropic part of the Reynolds-

stresses ρu′′
i u′′

j − 2
3 ρ̄kδi j appearing in the mean-flow momentum and energy equations, was included in the diffusive fluxes

(centred discretization in both the predictor and corrector sweeps of MacCormack’s scheme [29]). Vandromme and Ha Minh
[28] included only the isotropic part of the Reynolds-stresses in the convective flux, because of difficulties, which have since
been identified with the fact that the convective part of the rsm–rans equations (without the nonconservative products
[32] associated with Reynolds-stress production by mean-flow velocity-gradients, Pij := −ρu′′

i u′′
�∂x�

ũ j − ρu′′
j u′′

�∂x�
ũi ) is not

hyperbolic [33] because its Jacobian matrix does not have a complete system of eigenvectors [34–36]. Morrison [37] used an
implicit O (��2) muscl [38] scheme with Roe fluxes [18], which are contact-discontinuity-resolving [26], with ẽt as mean-
flow energy variable. The concept of isotropic effective pressure p̄ + 2

3 ρ̄k [28] was not used [37], and Reynolds-stresses
in the mean-flow equations were simply included in the diffusive fluxes (centred discretization). Both these early studies
[28,37] included computational examples of shock-wave/turbulent-boundary-layer interactions on structured grids. Chenault
et al. [39] used Morrison’s code [37] to compute the complex 3-D flow of a supersonic ejection in crossflow.

Traditionally, from a conceptual turbulence theory point-of-view, Reynolds-stresses are understood as an addition to
viscous stresses accounting for the effects of turbulent mixing on the mean-flow [40, pp. 32–33]. Rautaheimo and Siiko-
nen [34] were probably the first to recognize that, contrary to this conceptual description, Reynolds-stresses appear in the
mean-flow equations as 1-derivatives, and should therefore be included in the convective fluxes and not in the viscous
(diffusive) ones which regroup 2-derivatives. This is a fundamental mathematical difference with respect to 2-equation clo-
sures [41–45], whether linear [46–48] or nonlinear [49,50]. Within the framework of 2-equation closures, Reynolds-stresses
are not variables of the system of pdes (partial differential equations), but are instead replaced by a constitutive relation
involving mean-flow velocity-gradients, and correctly appear in the diffusive fluxes of the mean-flow equations. Rautaheimo
and Siikonen [34] also included the nonconservative products Pij in the convective terms to obtain a (nonstrictly) hy-
perbolic system [51] and constructed Roe fluxes for this representative system [34,52,53]. Schwarz-inequality realizability
constraints [54] were included in the eigenvector matrices [34, (3.22), p. 17] to avoid numerical instabilities. A simpler
method, using the isotropic effective pressure concept, in line with Vandromme and Ha Minh [28], which treats Pij as a
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