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Leap frog integration method is a standard, simple, fast, and accurate way to implement
velocity and position integration in particle-in-cell codes. Due to the direct solution of
kinetics of particles in phase space central to the particle-in-cell procedure, important
information can be obtained on particle velocity distributions, and consequently on
transport and heating processes. This approach is commonly associated with physical
situations where collisional effects are weak, but can also be profitably applied in some
highly collisional cases, such as occur in semiconductor devices and gaseous discharges at
atmospheric pressure. In this paper, we show that the implementation of the leap frog
integration method in these circumstances can violate some of the assumptions central to
the accuracy of this scheme. Indeed, without adaptation, the method gives incorrect results.
We show here how the method must be modified to deal correctly with highly collisional
cases.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Particle-in-cell (PIC) codes have been a popular method of modelling plasmas since the 1960s [1–4]. While their com-
putational cost may make complicated plasma chamber geometries and complex chemistries prohibitive, they provide a
direct simulation vehicle for study of plasma kinetics. By tracking samples of the particle phase space, the resultant discrete
superparticles allow for direct solutions of the motions of the particles, while the interpolation of the charges onto a grid
solves the potential for the system in a much more efficient fashion than direct particle–particle interactions.

Collisions began being introduced into PIC codes a decade after [5–8], mostly through the adoption of the Monte Carlo
procedure. The resultant codes usually relied on low collision probabilities, consistent with low pressure plasmas, with the
assumption that the collision frequency is small compared to the plasma frequency, and collisions being resolved at the
end of each timestep. A modification can be introduced for higher pressure cases, where a modified collision probability is
calculated, but this presents a collision limit of one collision per particle per timestep [9]. In the case of high collision rates,
an alternative is provided in texts such as Hockney’s [10,11], which still remain the definitive literature on the subject. In
this approach, a particle subdivided into collision times leading up to the timestep boundary may undergo several collisions
between each solution of the field equations. The global timestep �t is then the interval between solutions of the field
equation, while particles advances across these intervals a sequence of intermediate steps punctuated by collisions.

While attractive in its simplicity, in this work we show how subdivision method results in inaccurate estimation of the
velocity and position integration over time. We present a modification to the procedure outlined in Hockney’s work [10,11],
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which revises the leap frog integration method to allow for subdivision into collisional sub-timesteps without requiring
alternative integration procedures or timestep size reductions previously found to be necessary [12], and so reducing the
computational runtime for the simulation. In Sections 2.1 and 2.2 we outline the general procedure for implementing the
equations of motion integration and collision calculation, as given in the literature [11,13]. In Section 2.3 we then outline
the modification implemented in our integrator to allow for sub-timestepping, of the particles during collisions. Section 3
presents some simulation results from our implementation, examining the integration of a single particle and outlining the
behaviour of our solver in the sub-timestepping limit compared to the unmodified version and the probability implementa-
tion with no sub-timesteps. An overview summary is given in Section 4.

2. Highly collisional integrator outline

2.1. Summary of the leap frog integrator

As discussed in Section 1, PIC codes consist of iterative solutions of kinetics of superparticles in phase space, coupled
with the solution of the Poisson equation, to determine the potentials in the cell grid system. In this article we are mostly
interested in the former part of the procedure. A simple way of implementing the velocity and position integration is using
the leap frog method [11,13]

− q

m
∇φt = vt+�t/2 − vt−�t/2

�t
(1)

vt+�t/2 = xt+�t − xt

�t
(2)

This straightforward method introduces a half timestep phase shift between the velocity value and the position value,
effectively making the final velocity calculated and stored at the end of the timestep correspond to time t + �t/2 or the
average velocity for constant acceleration during the timestep. This is illustrated graphically in Fig. 1(a), where it can be
seen that the evaluation of the position and force calculation take place on the timestep boundary while the velocity is
evaluated on the mid-step. Of particular convenience is that all the position, velocity and acceleration values can be stored
as single variables without resorting to excessively short timesteps to conserve the accuracy of the approximation, as would
be necessary if the velocity was calculated in-step with the position, and thus require the calculation of average velocity for
each timestep to replicate the accuracy of the leap frog method.

2.2. High frequency Monte Carlo collisions

The implementation of Monte Carlo collisions varies depending on the frequency of collisions as well as the type of
collisions taking place. For collision cases of collision frequency up to once per timestep, the most frequently implemented
technique revolves around decoupling the collision from the velocity and position integration. This is achieved by carrying
out the particle advancement as in the case of no collisions and applying the collision process at the end of timestep. In
this case a pseudo-random uniform number is compared to the probability of collision for the particle, P , for the timestep.
The collision probability P can be calculated from the mean free path λ(v) as given by Birdsall [14]

P = 1 − exp

(−v�t

λ

)
= 1 − exp(−νc�t), νc = v

λ
(3)

where νc is the collision frequency for the particle velocity. Further selectivity of collision processes can be achieved by
having a probability for each different type of collision being simulated and comparing the uniform number between these
to select the appropriate collision process.

This procedure however limits the simulation to a maximum of single collision within a timestep. In many problems it
is desirable to have a higher collision rate, which requires breaking down of the timestep into smaller segments. This can
be implemented with the probability approach by comparing a uniform pseudo-random number to the collision probability
at constant sub-timestep intervals, with the Leap Frog integration taking place between each comparison. Alternatively a
non-constant sub-timestep interval can be generated for each particle, giving the time until collision, as given by

δt = − ln R

νc
(4)

where R is the uniform pseudo-random number. In this approach the sub-timestep and timestep boundaries no longer have
to align giving each particle an extra piece of data associated with it between each timestep. However this is a much more
direct way of simulating collisions and at high collision frequencies can be more accurate. These techniques are discussed
in further detail in Chapter 10 of Hockney et al. [11] or in the accompanying paper [10]. The schematic of the subdivision
of the leap frog integration over the timestep is shown in Fig. 1(b). It is this additional timestep division that we find of
interest in our work.
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