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a b s t r a c t

The solvation pressures arising from the confinement of a fluid by surfaces are calculated under two
different thermodynamic conditions, namely at constant density and at constant chemical potential,
through mesoscopic scale simulations. We consider two types of fluids, a model monomeric solvent on
the one hand, and a fluid composed of linear polymers dissolved in a monomeric solvent, on the other.
For these systems our simulations show that the prediction of the solvation (or disjoining) pressure
when the chemical potential is kept fixed is different from that obtained when the total density is fixed.
We find however, that the same trend between both types of simulations can be obtained when the value
of the fixed density is chosen as the average value of the density obtained at constant chemical potential.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Ensemble equivalence is one of the most cherished tenets of
statistical mechanics [1]. It is advantageous though to keep in mind
that it occurs only when certain conditions are met. Generally
speaking, for short range interacting potentials ensemble equiva-
lence is guaranteed in the thermodynamic limit [2]; however, for
long range interactions, such as the electrostatic one, ensemble
equivalence does not hold [3]. The choice of statistical ensemble is
typically given by the conditions of the physical situation at hand,
and for finite systems different values of measureable quantities
might be obtained for different ensembles. The question then arises
as to how is one to choose the most adequate ensemble when
dealing with systems that are not in the thermodynamic limit. The
purpose of this paper is to address this point through computer
simulations of fluids confined by effective surfaces, where a solva-
tion (or disjoining) pressure arises precisely because of the
confinement. We shall show that for finite systems the solvation
pressure computed in the canonical ensemble (constant particle
number, N, volume, V, and temperature, T), is generally different

from that calculated in the grand canonical ensemble (constant
chemical potential, m, V, and T), although the discrepancy disap-
pears as the thermodynamic limit is approached.

When fluids are confined by surfaces the pressure experienced
by the fluid particles is in general different from the pressure of the
(unconfined) bulk fluid; such pressure is defined as the solvation
pressure [4]. It is an important property to know when studying
colloidal dispersions,where thedisparityof sizes between thefluid’s
molecules and the colloidal particles allows one to model the
colloids as planar walls, because it yields information about the
stability of the dispersion. It can be measured through atomic force
microscopy (AFM), or with the surface force apparatus (SFA). In
those experimental arrangements thefluid is confined in only in one
direction, and remains free to exchange particleswith the rest of the
fluid. Hence, the mVT ensemble is the natural choice of ensemble for
thisphysical situation, but since simulations in theNVTensemble are
usually faster to perform and they can provide information about
transport properties, onemight want to knowhowdifferent can the
averages of the solvation pressure be between these ensembles.

With this aim in mind we have chosen a mesoscopic short range
interaction model for the fluid’s molecules, known as the dissipa-
tive particle dynamics (DPD) model [5], which has proved to be
successful when modeling complex polymeric systems, among
others. In addition to the short range nature of the interparticle
interactions, it has the advantage of being faster than atomistically
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detailed molecular dynamics [6] and by construction it has a built-
in thermostat. In the next section we present briefly the DPD
model, the effective surface interaction, and the characteristics of
the fluid. In Section 3, complete details of our simulations are
found, while our results and their discussion are shown in Section
4. Finally, our conclusions are drawn in Section 5.

2. Methods

In the DPD model, the total force between any two given
particles i and j is given by Fij ¼ FCij þ FDij þ FRij, where FCij, FDij, and
FRij are the conservative, dissipative and random forces respec-
tively, and have the functional forms shown below:
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�
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where êij ¼ rij=rij, rij ¼ ri � rj, rij¼jrijj, vij ¼ vi�vj, ri being the
position and vi the velocity of particle i, respectively. The variable xij is
a random number uniformly distributed between 0 and 1 with
Gaussian distribution andunit variance; aij,g and s are the strengthof
the conservative, dissipative and random forces, respectively. The
u(rij) factor is a spatialweight functionwhichcanbesimplychosenas:
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where Rc is a cut off distance, which is taken equal to 1. At inter-
particle distances larger than Rc all forces are equal to zero. This
simple distance dependence of the forces allows one to use rela-
tively large integration time steps in the dynamics. The relation
between the strengths of the dissipative and random forces defines
the built-in thermostat [7],kBT ¼ s2=2g; kB is Boltzmann’s
constant. The natural probability distribution function of the DPD
model is that of the NVT ensemble. For more details and applica-
tions of the DPD technique, see for example [8],

For the modeling a confined fluid in contact with a reservoir
bulk we use a hybrid Monte Carlo algorithm in the mVT ensemble
(GCMC) where the DPD particles are evolved in space and time
through integration of Newton’s second law with the forces given
by equation (1) for 10 time steps, then the total energy of the tenth
configuration is comparedwith the total energy of the first one, and
applying the standard Metropolis algorithm [9], only one of those
configurations is kept. One then proceeds to attempt solvent
particle insertions and deletions with equal probability to keep m

(of the solvent) fixed, using only the DPD configurational energy in
the Metropolis algorithm, since particles do not move in this part of
the computer code. Full details of the hybrid GCMC e DPD algo-
rithm have been given elsewhere [10]. To model the colloidal
particles dispersed in the fluid we have chosen for simplicity an
effective, linearly decaying force. More accurate, self e consistent
models for DPD surfaces are available [11] but they are beyond the
scope of the present work. The so-called wall force is given by
equation (3), below, for distances z� Rc, and it is zero otherwise.

FwðzÞ ¼ aw

�
1� z

Rc

�
: (3)

In the equation above, aw is the intensity of the particleewall
interaction, and z is the distance between a fluid particle and the
position of the surface. Thewall force in equation (3) is clearly short
ranged also, as are those among the DPD fluid particles. Two types
of fluid shall be considered here. The first one is a simple mono-
meric solvent; in the second we introduce linear polymers in
addition to the solvent monomers. Polymers are modeled as
monomers joined with freely rotating harmonic springs. The
property we are interested in studying, i. e., the solvation pressure

(P), is calculated as the difference between the component of the
pressure tensor which is perpendicular to the planar walls, Pzz, and
the bulk pressure, PB. The latter is obtained from simulations of the
same fluid but without confining walls, namely,

PðzÞ ¼ ½PzzðzÞ � PB�; (4)

where the components of the pressure tensor are obtained in our
simulations from the virial theorem [6]. The solvation pressure is
also calculated using the standard DPD algorithm in the NVT
ensemble; details of such algorithm have been published elsewhere
[12] and need not be repeated here.

3. Simulation details

We use dimensionless units throughout this work. The
constants in the dissipative and random forces in equation (1) were
set to 4.5 and 3, respectively, to keep the temperature fixed at
kBT ¼ 1.We carried out simulations for two types of systems: the
first one is a monomeric solvent confined by two walls along the
z-axis. The second is a mixture of 20 linear polymer molecules
dissolved in the fluid. Periodic boundary conditions were used for
the x- and y- axes, but not for the z-axis where the walls were
placed at the ends of the simulation box. The chemical potential
was fixed at m ¼ 37.7 units for all cases, except where indicated
otherwise; this value yields an average total density close to 3 units.
We carried out simulations with at least 200 blocks, with each
block comprising 104 MC configurations; the first 50 blocks were
used to equilibrate the system and the rest were used for the
production phase, to get good statistical averages of the physical
properties. For the DPD simulations we carried out calculations of
at least 200 blocks, with each block composed of 104 time steps,
and again discarded the first 50 blocks. A time step of dt ¼ 0.03 was
used for the dynamics part of the GCMC, and for the standard DPD
simulations (not MC). Each polymer molecule is composed of 7
identical DPD beads freely joined by springs. For the harmonic
springs used to represent bonds between beads in a polymer,
a spring constant K equal to 100.0, and equilibrium distance
req ¼ 0.7 were chosen. The dimensions of the simulation box were
7 � 7 � Lz*, with Lz* varying from 1 up to 14 units. We chose
a conservative force intensity (see equation (1)), aij ¼ 78.3, when
i ¼ j, while aij ¼ 79.3 for is j. For the interaction between a solvent
monomer and the wall (see equation (3)), a constant aw ¼ 120.0
was chosen, and to promote polymer adsorption on the walls,
aw ¼ 60.0 for each polymer bead. The acceptance rate for the
GCMC-DPD was in the range from about 15% up to 30%, depending
on the compression exerted by the walls on the fluid.

4. Results and discussion

Let us start by examining the density profiles along the direction
perpendicular to the walls, to see how the confined fluid acquires
a structure imparted on it by the walls, breaking the three-
dimensional symmetry of bulk fluid. In Fig. 1(a) we find the
density profile of the pure monomeric solvent, showing symmetric
density oscillations close to each wall, as is expected to occur due to
the ordering of the molecules into layers [13]. This structuring
disappears as the distance from the surfaces increases, until the
fluid behaves as if it was not perturbed at all (see data in the center
of the box in the z-direction), with an average density equal to its
bulk density. Fig. 1(b) displays the density profiles of the solvent
and of the 20 polymer molecules, where it is clear that the polymer
is completely (and symmetrically) adsorbed on the walls. Since the
entire surface of each wall gets covered by the polymers, we call
them “surface modifying” polymers.
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