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Non-Newtonian flow in porous media
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a b s t r a c t

In this article we present a review of the single-phase flow of non-Newtonian fluids in porous media. The
four main approaches for describing the flow through porous media in general are examined and
assessed in this context. These are: continuum models, bundle of tubes models, numerical methods and
pore-scale network modeling.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Newtonian fluids are defined to be those fluids exhibiting
a direct proportionality between stress s and strain rate _g in
laminar flow, that is

s ¼ m _g (1)

where the viscosity m is independent of the strain rate although it
might be affected by other physical parameters, such as
temperature and pressure, for a given fluid system [1,2]. All those
fluids for which the proportionality between stress and strain rate
is violated, due to nonlinearity or initial yield-stress, are said to be
non-Newtonian. Some of the most characteristic features of non-
Newtonian behavior are strain- and time-dependent viscosity,
yield-stress, and stress relaxation. Non-Newtonian fluids are
commonly divided into three broad groups: time-independent,
viscoelastic and time-dependent. However, in reality these classi-
fications are often by no means distinct or sharply defined [1,2].
Those fluids that exhibit a combination of properties from more
than one of the above groups are described as complex fluids [3],
though this termmay be used for non-Newtonian fluids in general.
A large number of rheological models have been proposed in the
literature to model all types of non-Newtonian fluids under diverse
flow conditions. However, the majority of these models are basi-
cally empirical in nature and arise from curve-fitting exercises [4]. A
few prominent examples of the non-Newtonian models from the
three groups are presented in Table 1.

1.1. Time-independent fluids

Time-independent fluids are those for which the strain rate at
a given point is solely dependent upon the instantaneous stress at
that point. Shear rate dependence is one of the most important and
defining characteristics of non-Newtonianfluids in general and time-
independentfluids inparticular.Whena typical non-Newtonianfluid
experiences a shearflowtheviscosityappears tobeNewtonianat low
shear rates. After this initial Newtonian plateau the viscosity is found
to vary with increasing shear rate. The fluid is described as shear-
thinning or pseudoplastic if the viscosity decreases, and shear-
thickening or dilatant if the viscosity increases on increasing shear
rate. After this shear-dependent regime, the viscosity reaches
a limiting constant value at high shear rate. This region is described as
the upper Newtonian plateau. If the fluid sustains initial stress
without flowing, it is called a yield-stress fluid. Almost all polymer
solutions that exhibit a shear rate dependent viscosity are shear-
thinning, with relatively few polymer solutions demonstrating
dilatant behavior. Moreover, in most known cases of shear-thick-
ening there is a region of shear-thinning at lower shear rates [4e6].

Fig. 1 demonstrates the six principal rheological classes of the
time-independent fluids in shear flow. These represent shear-
thinning, shear-thickening and shear-independent fluids each with
and without yield-stress. It is worth noting that these rheological
classes are idealizations as the rheology of these fluids is generally
more complex and they can behave differently under various
deformation and ambient conditions. Prominent examples of the
time-independent fluid models are: power-law, Ellis, Carreau and
Herschel-Bulkley. These are widely used in modeling non-New-
tonian fluids of this group [7].E-mail address: t.sochi@ucl.ac.uk.
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1.2. Viscoelastic fluids

Viscoelastic fluids are those that show partial elastic recovery
upon the removal of a deforming stress. Such materials possess
properties of both viscous fluids and elastic solids. Polymeric fluids
often show strong viscoelastic effects. These include shear-thin-
ning, extension-thickening, normal stresses, and time-dependent
rheology. No theory is yet available that can adequately describe all
of the observed viscoelastic phenomena in a variety of flows.
Nonetheless, many differential and integral constitutive models
have been proposed in the literature to describe viscoelastic flow.
What is common to all these is the presence of at least one char-
acteristic time parameter to account for the fluid memory, that is
the stress at the present time depends upon the strain or rate of
strain for all past times, but with a fading memory [6,8e11].

Broadly speaking, viscoelasticity is divided into twomajor fields:
linear and nonlinear. Linear viscoelasticity is the field of rheology
devoted to the studyof viscoelasticmaterials under very small strain
ordeformationwhere thedisplacement gradients are verysmall and
the flow regime can be described by a linear relationship between
stress and rate of strain. In principle, the strain has to be sufficiently
small so that the structure of the material remains unperturbed by
the flow history. If the strain rate is small enough, deviation from

linear viscoelasticity may not occur at all. The equations of linear
viscoelasticity are not valid for deformations of arbitrarymagnitude
and rate because they violate the principle of frame invariance. The
validity of linear viscoelasticity when the small-deformation
condition is satisfiedwitha largemagnitudeof rateof strain is still an
open question, though it is widely accepted that linear viscoelastic
constitutive equations are valid in general for any strain rate as long
as the total strain remains small. Nevertheless, the higher the strain
rate the shorter the time at which the critical strain for departure
from linear regime is reached [5,12,13].

The linear viscoelastic models have several limitations. For
example, they cannot describe strain rate dependence of viscosity
or normal stress phenomena since these are nonlinear effects. Due
to the restriction to infinitesimal deformations, the linear models
may be more appropriate for the description of viscoelastic solids
rather than viscoelastic fluids. Despite the limitations of the linear
viscoelastic models and despite being of less interest to the study of
flow where the material is usually subject to large deformation,
they are very important in the study of viscoelasticity for several
reasons [5,12,14]:

� They are used to characterize the behavior of viscoelastic
materials at small deformations.

� They serve as a motivation and starting point for developing
nonlinear models since the latter are generally extensions to
the linears.

� They are used for analyzing experimental data obtained in
small deformation experiments and for interpreting important
viscoelastic phenomena, at least qualitatively.

The two most prominent linear viscoelastic fluid models are the
Maxwell and Jeffreys.

Nonlinear viscoelasticity is the field of rheology devoted to the
studyof viscoelasticmaterials under large deformation, andhence it
is the subject of primary interest to the study of flow of viscoelastic
fluids. Nonlinear viscoelastic constitutive equations are sufficiently
complex that very few flow problems can be solved analytically.
Moreover, there appears to be no differential or integral constitutive
equation general enough to explain the observed behavior of poly-
meric systems undergoing large deformations but still simple
enough to provide a basis for practical applications [1,5,15].

As the linear viscoelasticity models are not valid for deforma-
tions of largemagnitude because they do not satisfy the principle of
frame invariance, Oldroyd and others tried to extend these models
to nonlinear regimes by developing a set of frame-invariant
constitutive equations. These equations define time derivatives in
frames that deform with the material elements. Examples include
rotational, upper and lower convected time derivatives. The idea of
these derivatives is to express the constitutive equation in real
space coordinates rather than local coordinates and hence fulfilling
the Oldroyd’s admissibility criteria for constitutive equations. These
admissibility criteria ensure that the equations are invariant under
a change of coordinate system, value invariant under a change of
translational or rotational motion of the fluid element as it goes
through space, and value invariant under a change of rheological
history of neighboring fluid elements [5,14].

There is a large number of rheological equations proposed for
the description of nonlinear viscoelasticity, as a quick survey to the
literature reveals. However, many of thesemodels are extensions or
modifications to others. The two most popular nonlinear visco-
elastic models in differential form are the Upper Convected
Maxwell and the Oldroyd-B models. Figs. 2e4 display several
aspects of the rheology of viscoelastic fluids in bulk and in situ. In
Fig. 2 a stress versus time graph reveals a distinctive feature of time
dependency largely observed in viscoelastic fluids. As seen, the

Table 1
Examples of non-Newtonian rheological models.

Model Equation

Power-Law m ¼ C _gn�1

Ellis m ¼ mo

1þ ð s
s1=2Þ

a�1

Carreau m ¼ mN þ mo � mN

½1þ ð _gtcÞ2�
1�n
2

Herschel-Bulkley s ¼ so þ C _gnðs > soÞ
Maxwell

sþ l1
vs

vt
¼ mo _g

Jeffreys
sþ l1

vs

vt
¼ mo

�
_gþ l2

v _g

vt

�

Upper Convected Maxwell sþ l1s
V ¼ mo _g

Oldroyd-B
sþ l1s

V ¼ mo
�
_gþ l2 _g

V�

Godfrey mðtÞ ¼ mi � Dm0
�
1� e�t=l0

�� Dm00ð1� e�t=l00 Þ
Stretched Exponential Model mðtÞ ¼ mi þ ðminf � miÞð1� e�ðt=lsÞc Þ

V
_
upper convected time derivative, a rheological parameter, _g rate of strain, _g rate of

strain tensor, l1 relaxation time, l2 retardation time, l0 l00 ls time constants, m
viscosity, mi initial-time viscosity, minf infinite-time viscosity, mo zero-shear viscosity,
mN infinite-shear viscosity, Dm0 Dm00 viscosity deficits, s stress, s stress tensor, s1/2
stress when m ¼ mo/2, so yield-stress, c dimensionless constant, C consistency factor,
n flow behavior index, t time, tc characteristic time of flow system.
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Fig. 1. The six main classes of the time-independent fluids presented in a generic
graph of stress against strain rate in shear flow.
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