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In many scientific fields, empirical models are employed to facilitate computational 
simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds 
stress closures enable computationally-efficient Reynolds Averaged Navier Stokes simula-
tions. Likewise, in solid mechanics, constitutive relations between the stress and strain 
in a material are required in deformation analysis. Traditional methods for developing 
and tuning empirical models usually combine physical intuition with simple regression 
techniques on limited data sets. The rise of high performance computing has led to a 
growing availability of high fidelity simulation data. These data open up the possibility 
of using machine learning algorithms, such as random forests or neural networks, to 
develop more accurate and general empirical models. A key question when using data-
driven algorithms to develop these empirical models is how domain knowledge should 
be incorporated into the machine learning process. This paper will specifically address 
physical systems that possess symmetry or invariance properties. Two different methods 
for teaching a machine learning model an invariance property are compared. In the first 
method, a basis of invariant inputs is constructed, and the machine learning model is 
trained upon this basis, thereby embedding the invariance into the model. In the second 
method, the algorithm is trained on multiple transformations of the raw input data until 
the model learns invariance to that transformation. Results are discussed for two case 
studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both 
cases embedding the invariance property into the input features yields higher performance 
at significantly reduced computational training costs.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In many scientific domains, macroscopic phenomena are governed by microscopic interactions. In order to enable efficient 
simulations of such systems, empirical models are often employed to approximate the effect of the microscopic interactions. 
For example, in turbulence modeling, Reynolds Averaged Navier Stokes (RANS) simulations use empirical models for the 
Reynolds stresses to approximate the effect of turbulent transport on the mean momentum field. These simulations provide 
significant savings in computational cost in comparison to Direct Numerical Simulations (DNS), which directly resolve the 
turbulent fluctuations all the way down to the smallest scales. Empirical models are also used in solid mechanics to relate 
stress to deformation that is potentially complex at the atomic scale, and in thermodynamic relations for non-ideal gases, 
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and in electromagnetism to define material properties such as conductivity. These constitutive models allow continuum 
methods to be used in lieu of direct simulation of the atomic interactions.

Traditionally, these models have been developed through a combination of theoretical knowledge and calibration to 
a limited set of data from simplified test cases. For example, the widely-used Spalart–Allmaras RANS turbulence model 
was initially tuned to reproduce experimental results for two-dimensional mixing layers and wakes [1]. Likewise, the wall 
functions commonly employed to model the effects of walls on turbulent flows were developed based on results for a 
flat plate boundary layer [2]. When defining the constitutive relations for hyper-elastic materials, Ogden [3] used physical 
arguments to determine the key terms, then fit the coefficients to experimental data. Valanis and Landel [4] used a similar 
methodology for forming their constitutive relation for hyper-elastic materials. These examples are typical of data-limited 
regimes, where simple models with only a few free parameters are desirable because they can avoid over-fitting when tuned 
to the limited amount of available experimental data.

More recently, the rise of high performance computing has led to the availability of large high-fidelity data sets in 
increasingly complex configurations. In fluid mechanics, Direct Numerical Simulations (DNS) resolve all scales of the time-
dependent flow. In solid mechanics, Molecular Dynamics (MD) simulations resolve complex material deformation with 
atomic resolution. While it is not yet computationally feasible to run these high fidelity simulations for many full-scale 
applications, these simulations output huge quantities of data that can be mined to develop and improve empirical mod-
els. Furthermore, advances in experimental techniques, such as digital volume correlation [5,6], tomographic particle image 
velocimetry [7], and magnetic resonance velocimetry [8], are yielding experimental data sets of unprecedented size and 
detail.

There have already been several efforts to use machine learning algorithms to leverage these large high-fidelity data sets 
to construct more accurate model closures. Milano and Koumoutsakos [9] used DNS results for a turbulent channel flow to 
train a neural network to reconstruct the near wall flow. Tracey et al. [10,11] used machine learning algorithms to model 
the Reynolds stress anisotropy, and also to mimic the source terms from the Spalart–Allmaras turbulence model. Duraisamy 
et al. [12] used neural networks and Gaussian processes to model intermittency in transitional turbulence, and Zhang et 
al. [13] used these algorithms to model turbulence production in channel flow. Data driven models have also been used to 
calibrate models for sub-surface flows [14]. Ling and Templeton [15] used Random Forests to predict regions of high model 
form uncertainty in RANS results.

Data-driven methods have also been adopted to develop advanced constitutive models in solid mechanics. Ghaboussi [16,
17] proposed the use of neural networks for constitutive modeling of trusses and fiber-reinforced composites. Subsequently, 
neural networks have been used to model the stress–strain relation in a variety of materials, including sand [18], viscoplastic 
materials [19], metal alloys [20], and concrete [21]. Feng and Yang [22] also used data-driven genetic evolution methods to 
derive a constitutive relation for composite materials. Shen et al. [23] and Liang et al. [24] implemented neural networks 
to model the strain energy function for hyper-elastic materials and elastomeric foams, respectively. Clearly, data-driven 
methods are gaining popularity in the context of solid mechanics as well.

One of the key questions when applying data-driven techniques to physical systems is to what extent domain knowl-
edge can and should be built into the algorithms. One school of thought in the machine learning community is that very 
little domain knowledge needs to be injected into the algorithm, and that given sufficient data, the algorithm should be 
capable of discerning patterns and structure on its own [25,26]. One drawback of embedding domain knowledge into the 
machine learning model is that if that domain knowledge proves faulty, it can lead to diminished performance in the 
machine-learned model. For example, Piatetsky [25] points out that an algorithm determining potential truck routes could 
use domain knowledge to rule out any routes that involve driving over water; while this rule seems reasonable and could 
reduce computational cost, it might be inapplicable in the winter when frozen lakes would permit truck passage. Grzes and 
Kudenko [27] showed that building erroneous domain knowledge into their reinforcement learning model led to significant 
deterioration in model performance. In many physical systems, however, definitive and exact domain knowledge does exist 
in the form of known invariances and symmetries.

For example, the classical laws of motion are known to obey Galilean invariance, which states that these laws do not 
change in different inertial frames of reference. In fact, the laws of motion are intricately linked to invariance properties. 
Noether’s theorem [28,29] describes how symmetry properties represent fundamental constraints that can be used to derive 
the laws of motion, underlining how central these properties are in physical systems. Given the importance of these sym-
metry properties, it would be desirable, both for model accuracy and physical realizability, for any machine learning model 
of a system with an invariance property to respect those invariances. In the context of fluid mechanics, Galilean invariance 
dictates that any scalar flow variable, such as pressure or velocity magnitude, will be invariant to rotations, reflections, or 
translations of the frame of reference. Likewise, the same principle dictates that solid deformation response will depend 
only on stretches, not on local rotations. Similarly, many crystalline materials exhibit material symmetry properties, such 
that scalar functions like the internal strain energy will be invariant to rotations within the symmetry group associated 
with the crystal. A function is an invariant under a given transformation if its value does not change when its inputs are 
subjected to that transformation. A more thorough discussion of invariants is given in Sec. 2.1.

While there has been increasing interest in applying data-driven methods to closure models for physical systems, there 
is no real consensus in the literature on how the input feature sets for these models should be chosen, and whether these 
input features should respect the invariance properties of the system. Whereas in traditional closure modeling, invariance 
properties are typically enforced explicitly, machine learning closure models have the option of using non-invariant inputs 
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