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We apply second order finite differences to calculate the lowest eigenvalues of the 
Helmholtz equation, for complicated non-tensor domains in the plane, using different grids 
which sample exactly the border of the domain. We show that the results obtained apply-
ing Richardson and Padé–Richardson extrapolations to a set of finite difference eigenvalues 
corresponding to different grids allow us to obtain extremely precise values. When possi-
ble we have assessed the precision of our extrapolations comparing them with the highly 
precise results obtained using the method of particular solutions. Our empirical findings 
suggest an asymptotic nature of the FD series. In all the cases studied, we are able to 
report numerical results which are more precise than those available in the literature.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Among the different methods for estimating the eigenvalues and eigenfunctions of the Laplacian on a finite region of the 
plane, the finite difference (FD) method is the simplest, although the accuracy of the results obtained with this method is 
limited. In particular, for domains with reentrant corners with an angle of π/α, it is well known that the error of the FD 
eigenvalues is dominated by a behavior h2α for h → 0 (h is the grid spacing).

The so-called L-shaped membrane [α = 2/3] is a famous example which was studied long time ago by Fox, Henrici and 
Moler [14]. Because of the quite slow convergence of FD in this case (�E ≈ h4/3), those authors applied an alternative 
method, the method of particular solutions (MPS), and, exploiting all the symmetries of the problem, they were able to 
obtain the first 8 digits of the lowest eigenvalue of the L-shape correctly, E1 ≈ 9.6397238. Interestingly, the paper also men-
tions a precise (unpublished) value obtained by Moler and Forsythe, E1 ≈ 9.639724, extrapolating the FD values obtained 
with very fine grids. Unfortunately, the extrapolation is neither named nor explained.
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A valuable discussion of the Richardson extrapolation of FD results for the eigenvalues of the Laplacian on two-
dimensional regions of the plane is contained in [22], where it is pointed out that the correct exponents of the asymptotic 
behavior of E1 for h → 0 must be used in the extrapolation.

The purpose of the present paper is to show that it is possible to obtain quite precise approximations to the eigenvalues 
of the Laplacian on a certain class of two-dimensional domains (specifically domains whose borders are sampled by the 
grid) by Richardson extrapolation of the FD results, provided that the asymptotic behavior of the FD eigenvalues for h → 0
is taken into account correctly.

The paper is organized as follows: in section 2 we provide a general discussion of Richardson extrapolation, and its 
relation to the “method of deferred corrections”; in section 3, we describe the practical implementation of the Richardson 
extrapolation used in this paper; in section 4 we present the numerical results obtained for different domains, comparing 
them with the best results available in the literature; finally, in section 5 we summarize our findings and discuss possible 
directions of future work.

2. Richardson extrapolation

Richardson extrapolation is interpolation of samples of a sequence Sn by a continuous function of a continuous variable 
z followed by extrapolation to z = 0 to approximate the limit of the sequence. The slowly convergent series 

∑∞
n=1 n−2, 

for example, can be summed by taking the sequence of partial sums, Sν = ∑ν
n=1 n−2, to be samples of a function in 

z ≡ 1/ν . In our application, the sequence is that of approximations to an eigenvalue by finite difference calculations whose 
asymptotic error is a series in some power of the grid spacing h; here z = h2 [usually] or z = h4/3 [for one singular 
application].

The history including many independent discoveries is reviewed by Brezinski [7], Marchuk and Shaidurov [25], Sidi [34], 
Walz [39] and Joyce [21]. Christian Huyghens applied Richardson extrapolation to estimate π to 35 decimals from the 
perimeters of a sequence of polygons with more and more sides inscribed in the unit circle. Richardson’s (1927) paper 
[30] contained a plethora of examples that was the first comprehensive display of the power of extrapolation; he claimed 
no novelty but credited others including an obscure Russian language paper by Bogolouboff and N. Krylov,1 Richardson 
extrapolation of eigenvalues is discussed in Pryce’s book on numerical solution of Sturm–Liouville problems [28].

Richardson extrapolation has four steps. First, compute samples { f (hn)} of the function being extrapolated. Second, 
choose a set of basis functions {φ j(x)} – usually polynomials – for an approximation

f N(h) ≡
N∑

j=1

a j φ j(h) (1)

The coefficients a j can always be computed by solving a matrix problem at a cost of O (N3) operations, and this is necessary 
when the φ j are a mixture of polynomials and polynomials multiplied by powers of log(x), for example. However, it is faster 
to use Neville–Aitken interpolation to compute a two-dimensional array (“Richardson Table”) of approximations of different 
N formed from different subsets of the full sample set { f (hn)}. This is cheaper than matrix-solving [O (N2) floating point 
operations] though this is only a small virtue because of the speed of modern laptops. More important, extrapolation is 
credible only if its answers are independent of numerical choices such as N and subsets of the full set of samples. More 
precisely, a numerical answer is believable if and only if several different values of the numerical parameters yield the same 
answer to within the user chosen tolerance. The Richardson Table allows a quick search for such stable approximations. We 
shall return to this in analyzing each numerical example.

Various conventions are employed. A popular one is to arrange the table as a lower triangular matrix with N samples of 
f (z), the function being approximated, as the first column:

R j,1 = f (z j) (2)

The simple recursion is

R j,k = (z − z j−k−1)R j,k−1 − (z − z j)R j−1,k−1

z j − z j−k+1
, k = j, ( j + 1), . . . , N, j = 1,2, . . . , N (3)

Each entry in column k is a polynomial of degree (k − 1) which interpolates a subset of k samples. The basic step com-
bines two polynomials that interpolate (k − 1) points each to generate a polynomial that interpolates at the k points 
{z j−k+1, . . . , z j}. Both generators interpolate at the (k − 2) points {z j−k+1, . . . , z j}, but only R j,k−1 interpolates at z j while 
R j−1,k−1 does not, but interpolates at z j−k+1. It is easy to verify that

1 N. Bogolouboff and N. Krylov, On the Rayleigh’s principle in the theory of the differential equations of the mathematical physics and upon the Euler’s 
method in the calculus of variations, Acad. des Sci. de l’Ukraine, Classe, Phys. Math., tome 3, fasc. 3 (1926).
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