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The DG algorithm is a powerful method for solving pdes, especially for evolution equations 
in conservation form. Since the algorithm involves integration over volume elements, it is 
not immediately obvious that it will generalize easily to arbitrary time-dependent curved 
spacetimes. We show how to formulate the algorithm in such spacetimes for applications 
in relativistic astrophysics. We also show how to formulate the algorithm for equations 
in non-conservative form, such as Einstein’s field equations themselves. We find two 
computationally distinct formulations in both cases, one of which has seldom been used 
before for flat space in curvilinear coordinates but which may be more efficient. We also 
give a new derivation of the ALE algorithm (Arbitrary Lagrangian–Eulerian) using 4-vector 
methods that is much simpler than the usual derivation and explains why the method 
preserves the conservation form of the equations. The various formulations are explored 
with some simple numerical experiments that also investigate the effect of the metric 
identities on the results. The results of this paper may also be of interest to practitioners 
of DG working with curvilinear elements in flat space.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In relativistic astrophysics, simulations involving hydrodynamics or magnetohydrodynamics or similar physics are most 
often carried out using finite-volume methods. Two major challenges of such simulations are accuracy and computational 
efficiency. Many important problems cannot be solved to the required accuracy using currently available hardware resources. 
Accuracy can be improved only by increasing numerical resolution. If parts of the solution are smooth so that one might 
want to take advantage of high-order methods to improve the accuracy, current methods eventually run into problems. 
High-order finite-volume methods couple together more cells and require more communication between cells. Ultimately, 
when the number of cells and processors gets large enough, the communication time begins to limit the computation and 
the code no longer scales with the number of processors. Moreover, astrophysical applications often involve multiphysics 
(fluids, magnetic fields, neutrinos, electromagnetic radiation, relativistic gravity). With current formulations, each new type 
of physics often requires its own computational treatment, making coupling of the physics difficult. As one looks ahead to 
the arrival of exascale computing, it seems that we should look to the development of algorithms that can take advantage 
of these very large machines properly for astrophysics.
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In the last decade, discontinuous Galerkin (DG) methods have emerged as the leading contender to achieve all the goals 
of a general purpose simulation code, particularly for equations in conservation form: high order accuracy in smooth regions, 
robustness for shocks and other discontinuities, scalability to very large machines, accurate handling of irregular boundaries, 
adaptivity, and so on. Many applications of DG in terrestrial fluid dynamics have appeared. However, applications in relativity 
and astrophysics have so far been mainly exploratory [1–10] and confined to simple problems.

The goal of this paper is to formulate the DG method for arbitrary 3-dimensional problems involving general relativistic 
gravitation. At first sight, this sounds tricky: the basic DG algorithm involves integrating the pdes over space and using 
Gauss’s Theorem to turn integrals of divergences into surface integrals. In general relativity, spacetime is curved and coor-
dinates are arbitrary and not necessarily simply related to physical measurements by an observer. So should integrations 
be performed over coordinate volume or proper volume? What are the corresponding normal vectors that enter into the 
interface flux prescriptions? How should Einstein’s equations, which are not typically in conservation form, be handled? Is 
the weak form or the strong form of the equations better? How do the so-called metric identities affect the formulation? 
We give answers to these questions. In particular, we find that the final formulation is very close to that already developed 
for Euclidean space in curvilinear coordinates. Moreover, the covariant approach adopted in this paper gives new insights 
into the standard curvilinear coordinate treatment. Not only are derivations much simpler, but alternative formulations that 
may be more efficient computationally are found.

Here we summarize the key results in this paper.

• Despite the curvature of spacetime, the DG algorithm can easily be formulated in general relativity. In fact, the formu-
lation is analogous to that for curvilinear coordinates in flat spacetime.

• In the general case, there are two distinct strong formulations for conservation laws. For the tensor-product basis func-
tions used in this paper, the corresponding weak formulations are both equivalent to one of the strong formulations.

• Only one of the formulations has been widely used for flat space in curvilinear coordinates. In numerical experiments, 
the other appears to be somewhat more efficient and should be further investigated.

• Similarly, there are two inequivalent formulations for hyperbolic equations in non-conservation form. These formulations 
are important for solving Einstein’s equations.

• Time-dependent mappings (Arbitrary Lagrangian–Eulerian (ALE) methods and the dual-frame approach [11] that has 
proved useful for black hole simulations) are easily implemented in the relativistic treatment.

• We give streamlined derivations of the so-called metric identities, the geometric conservation law, and the ALE method 
for moving grids. The derivation of the ALE method is novel and uses general covariance to get the result in a few lines. 
In addition, the reason that the ALE method preserves the conservation form of the equations is explained.

• Satisfying the metric identities discretely is often claimed to be a necessary condition for “free-stream preservation,” or 
the requirement that a uniform flow remain uniform for all time. We show that in fact this statement is true for only 
one of the computational formulations of the DG algorithm and not the other.

• We clarify how normal vectors should be normalized. The normal vector that the boundary flux vector is projected 
along does not need to be the unit normal — the normalization factor cancels out of the algorithm.

A covariant treatment of DG in general relativity has previously been given by Radice and Rezzolla [4]. This paper covers 
many aspects that were not covered by them.

2. DG for equations in conservation form

2.1. Form of the equations

In a general time-dependent curved spacetime, a conservation law can be written in terms of a 4-divergence:

∇μF μ = 0, (2.1)

where ∇μ denotes the covariant derivative. Here and throughout, repeated indices are summed over. Greek indices μ, ν, . . .
range from 0 to 3, while Latin indices a, b, . . . will be purely spatial, ranging from 1 to 3. We choose units with the speed 
of light c = 1, so that x0 = t . We will often denote F 0 by u, a quantity like density that is conserved. The spatial flux vector 
F a is generally a function of u. In practice, rather than a single conservation law like (2.1), one deals with a system of 
conservation laws. In this case, u is a vector of conserved quantities and F a is a vector of flux vectors. For example, u and 
F a are vectors of length 5 for hydrodynamics. In this paper, we will typically not need to deal with the various separate 
equations in a system of conservation laws. Accordingly, we will write u and F a whether we are dealing with one equation 
or a system. All the derivations go through independently on each equation in a system.

It will be convenient to generalize (2.1) to allow a source term s on the right-hand side. Such a source term arises, 
for example, when one considers conservation of energy and momentum in a general curved (or curvilinear) metric. The 
divergence of the energy–momentum tensor gives an extra term that cannot be included as the pure divergence of a flux 
vector. However, the extra term depends only on u and not on its derivatives. This is the key requirement that we place on 
the source term in the subsequent treatment.
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