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One of the main issues in the field of numerical schemes is to ally robustness with 
accuracy. Considering gas dynamics, numerical approximations may generate negative 
density or pressure, which may lead to nonlinear instability and crash of the code. 
This phenomenon is even more critical using a Lagrangian formalism, the grid moving 
and being deformed during the calculation. Furthermore, most of the problems studied 
in this framework contain very intense rarefaction and shock waves. In this paper, the 
admissibility of numerical solutions obtained by high-order finite-volume-scheme-based 
methods, such as the discontinuous Galerkin (DG) method, the essentially non-oscillatory 
(ENO) and the weighted ENO (WENO) finite volume schemes, is addressed in the one-
dimensional Lagrangian gas dynamics framework. After briefly recalling how to derive 
Lagrangian forms of the 1D gas dynamics system of equations, a discussion on positivity-
preserving approximate Riemann solvers, ensuring first-order finite volume schemes to 
be positive, is then given. This study is conducted for both ideal gas and non-ideal gas 
equations of state (EOS), such as the Jones–Wilkins–Lee (JWL) EOS or the Mie–Grüneisen 
(MG) EOS, and relies on two different techniques: either a particular definition of the 
local approximation of the acoustic impedances arising from the approximate Riemann 
solver, or an additional time step constraint relative to the cell volume variation. Then, 
making use of the work presented in [89,90,22], this positivity study is extended to high-
orders of accuracy, where new time step constraints are obtained, and proper limitation 
is required. Through this new procedure, scheme robustness is highly improved and 
hence new problems can be tackled. Numerical results are provided to demonstrate the 
effectiveness of these methods.
This paper is the first part of a series of two. The whole analysis presented here is extended 
to the two-dimensional case in [85], and proves to fit a wide range of numerical schemes 
in the literature, such as those presented in [19,64,15,82,84].
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1. Introduction

This paper is the first part of a series of two, which is only concerned with the one-dimensional case. The second 
paper, [85], investigates the two-dimensional situation. Here, we aim at demonstrating the positivity-preservation property 
of methods solving one-dimensional Lagrangian gas dynamics equations, from first-order to high-orders of accuracy, under 
suitable constraints.

It is well known that fluid dynamics relies on two kinematics descriptions: the Eulerian or spatial description and the La-
grangian or material description, refer for instance to [49,44]. In the former, the conservation laws are written using a fixed 
reference frame whereas in the latter they are written through the use of a time dependent reference frame that follows the 
fluid motion. The Lagrangian representation is particularly well adapted to describe the time evolution of fluid flows con-
tained in regions undergoing large shape changes due to strong compressions or expansions. Further, in this approach, there 
is no mass flux across the boundary surface of a control volume moving with the fluid velocity. Thus, Lagrangian represen-
tation provides a natural framework to track accurately material interfaces in multi-material compressible flows. Moreover, 
such a representation avoids the appearance of numerical diffusion resulting from the discretization of the convection terms 
present in the Eulerian framework.

In the Lagrangian description, the gas dynamics system may be derived in two different but consistent formulations, 
namely the updated Lagrangian formulation based on the moving configuration, and the total Lagrangian formulation based 
on the fixed initial configuration. In this latter approach, the physical conservation laws are written employing the La-
grangian coordinates which refer to the initial configuration of the fluid flow. Moreover, in these equations the divergence 
and gradient operators are expressed by means of the Piola transformation [49], which requires the knowledge of the defor-
mation gradient tensor, i.e. the Jacobian matrix associated to the Lagrange–Euler flow map. The deformation gradient tensor 
characterizes the time evolving deformation and is governed by a partial differential equation named the geometric conser-
vation law (GCL). To ensure the consistency between the initial and the current configurations, this tensor has to satisfy an 
involutive constraint [73], which implies the Piola compatibility condition. The total Lagrangian approach is very well known 
in the solid mechanics community wherein it is extensively used to model solid dynamics undergoing large deformations 
[49]. In contrast to the total Lagrangian formulation, the updated Lagrangian formulation is a moving domain method, which 
is widely employed in fluid mechanics. In this approach, the gas dynamics equations are written employing the Eulerian 
coordinates. They refer to the current configuration of the fluid flow. The time derivative of the physical variables is taken 
following the path of the fluid particles: this is the material derivative. The integral formulation of the conservation laws 
is readily obtained by employing the Reynolds transport formula over an arbitrary moving control volume. The time rate 
of change of a zone volume is governed by a partial differential equation which is the updated Lagrangian form of the 
GCL.

Two approaches are mainly employed to solve updated Lagrangian formulations of the gas dynamics equations, namely 
the cell-centered and staggered approaches. In the cell-centered hydrodynamics, a cell-centered placement of all hydrody-
namic variables is employed. However, the referential being assumed to move as the fluid flows, one needs to advect the 
grid points. Also, this has to be done with respect to the GCL, which means that the new volume computed through the 
new position of the grid nodes has to be the same as the one derived from the discretization of the governing equation 
of the specific volume. Furthermore, in the multi-dimensional case, due to the large number of neighboring cells sharing a 
node, one cannot apply in a straightforward manner one-dimensional solvers to define uniquely the grid point velocity. The 
staggered hydrodynamics has been developed to avoid such complications. In this framework, a staggered discretization is 
employed such that the kinematic variables (vertex position, velocity) are located at the nodes whereas the thermodynamic 
variables (density, pressure, internal energy) are defined at the cell centers. The conversion of kinetic energy into internal 
energy through shock waves, consistent with the second law of thermodynamics, is ensured by adding an artificial viscosity 
term. The staggered grid schemes employed in most hydro-codes have been remarkably successful over the past decades 
in solving complex multi-dimensional compressible fluid flows, refer for instance to [45,88,17,18,32,55,33,34,4]. However, 
they clearly have some theoretical and practical deficiencies such as mesh imprinting and symmetry breaking. In addition, 
the fact that all variables are not conserved over the same space can make these schemes difficult to handle when one 
wants to assess analytical properties of the numerical solution. For all these reasons, this paper focuses on the cell-centered 
approach. Different techniques may be employed to build the numerical fluxes and move the grid through the use of ap-
proximate Riemann solvers, with respect to the GCL. The interested readers may refer to the following papers [1,19,20,61,
72,15,53,82,5,16,10,84] for a more detailed description of this approach and its variants. Let us mention that besides these 
two mainly employed approaches, i.e. the cell-centered and staggered approaches, a third one has recently grows quickly 
in popularity these past years. This third framework, referred to as Point-Centered Hydrodynamic (PCH), combines the fea-
tures of the first two, namely a dual grid and the fact that kinetical and thermodynamical variables are conserved on the 
same cells. Indeed, in this particular frame, the momentum and total energy conservation equations are solved on the dual 
grid around the nodes, generally by means of an edge-based finite element scheme or an edge-based upwind finite volume 
method. The PCH approach has been successful applied these past decades to problematics concerned with the simulation 
of incompressible flows, compressible Lagrangian flows, or Lagrangian solid dynamics, refer for instance to [28,29,24,42,48,
76,79,78,86,87,67,68,2,3]. Two of the main advantages of these schemes are that there are very well adapted to triangular 
or tetrahedral grids, as well as they reduce in most cases problems related to mesh stiffness.
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