
Identifying disease-causal genes using Semantic Web-based representation
of integrated genomic and phenomic knowledge

Ranga Chandra Gudivada a,c,*, Xiaoyan A. Qu a,c, Jing Chen a,c, Anil G. Jegga b,c,
Eric K. Neumann d, Bruce J. Aronow a,b,c,*

a Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45229-3039, USA
b Department of Pediatrics, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH 45229-3039, USA
c Division of Biomedical Informatics, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH 45229-3039, USA
d Clinical Semantics Group, Lexington, MA 02420, USA

a r t i c l e i n f o

Article history:
Received 1 September 2007
Available online 23 August 2008

Keywords:
Semantic Web
RDF
OWL
SPARQL
Semantic ranking
Ontologies
Data integration
Bioinformatics
NLP

a b s t r a c t

Most common chronic diseases are caused by the interactions of multiple factors including the influ-
ences and responses of susceptibility and modifier genes that are themselves subject to etiologic
events, interactions, and environmental factors. These entities, interactions, mechanisms, and pheno-
typic consequences can be richly represented using graph networks with semantically definable
nodes and edges. To use this form of knowledge representation for inferring causal relationships,
it is critical to leverage pertinent prior knowledge so as to facilitate ranking and probabilistic treat-
ment of candidate etiologic factors. For example, genomic studies using linkage analyses detect
quantitative trait loci that encompass a large number of disease candidate genes. Similarly, tran-
scriptomic studies using differential gene expression profiling generate hundreds of potential disease
candidate genes that themselves may not include genetically variant genes that are responsible for
the expression pattern signature. Hypothesizing that the majority of disease-causal genes are linked
to biochemical properties that are shared by other genes known to play functionally important roles
and whose mutations produce clinical features similar to the disease under study, we reasoned that
an integrative genomics–phenomics approach could expedite disease candidate gene identification
and prioritization. To approach the problem of inferring likely causality roles, we generated Semantic
Web methods-based network data structures and performed centrality analyses to rank genes
according to model-driven semantic relationships. Our results indicate that Semantic Web
approaches enable systematic leveraging of implicit relations hitherto embedded among large
knowledge bases and can greatly facilitate identification of centrality elements that can lead to
specific hypotheses and new insights.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

The identification of genes responsible for causing or preventing
human disease provides critical knowledge of underlying patho-
physiological mechanisms and is essential for developing new diag-
nostics and therapeutics. Traditional approaches such as positional
cloning and candidate gene analyses, as well as modern methodolo-
gies such as gene expression profiling tend to fail to converge on spe-
cific genes or features that underlie a disease [1,2]. Quantitative trait
loci intervals identified by positional genetics usually include any-

where between 5 and 300 genes [3] and expression studies generate
hundreds of unprioritized differentially regulated genes [4]. The
identification of the right set of genes from these generated lists
for further mutation analysis to associate with the disease under
study is termed gene prioritization [5–8]. Prioritizing candidates
within these lists tends to be difficult, thus techniques and tools to
identify key candidates from gene lists generated by disease pro-
cess-associated gene discovery methods would be very desirable.
Moreover, the demonstration of successful methods for the identifi-
cation of disease-critical genes would also serve to validate specific
computational approaches useful for knowledge representation and
inference for the improvement of human health.

The discovery of genes and specific gene variants that cause or
modify disease has been shown to be accelerated by knowledge
integration and the application of a variety of computational
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methodologies, in particular to genome-scale experiments [5].
Integrating diverse functional genomic data has several advantages
as described by Giallourakis et al. [1]. First, a more comprehensive
description of functional gene networks can be formed by essen-
tially combining complementary view-points generated from
interrogation of diverse aspects of gene function from different
technologies. Second, data integration reduces noise associated
with each experimental limitation that limits false positives and
increases sensitivity and specificity to detect true functional rela-
tionships. However, large-scale data aggregation efforts tend to
be manual and lack sufficient semantic abstraction to allow for
mechanistic generalizations.

Several gene prioritization methods have been developed
[2,3,5–17]. Some of them [4,5,9,10,12] use training gene sets to
prioritize candidate test genes based on their similarity with
the training properties obtained from the reference set. The sig-
nificant drawback in these methods is the dependence on there
being a sufficiently large number of training set genes. In many
practical situations, relevant training sets are not available and
results may also vary depending on different approaches used
to delineate the particular training set. Though there are meth-
ods [2,6–8,11,13,14] that do not require any training set, their
potential is limited by their reliance on a small number of data
sources. Here, for the first time we utilized Semantic Web (SW)
[18] standards and techniques for finding human disease genes.
Resource Description Framework (RDF) (www.w3.org/RDF/) and
Ontology Web Language (OWL) (www.w3.org/2004/OWL/) are
used to integrate genomic and phenomic annotations associated
with the candidate gene set. The resulting BioRDF (i.e. RDF gen-
erated from life science datasets) is a conventional directed acy-
clic graph (DAG) on to which centrality analysis is applied to
score the elements in the network based on their importance
within network structure. Centrality analysis determines the rel-
ative importance of a node within a graph, by performing a
graph theoretic measure on each node [19]. There are several
measures to quantify centrality. Here we have utilized degree
centrality analysis, which considers the number of links incident
upon a node. In the context of RDF, resources that have a high
in-degree (the number of links coming into a node in a directed
graph) or out-degree (the number of links going out of a node in
a directed graph) implicate a highly significant node. Central ele-
ments in biological networks are generally found to be essential
for viability and their delineation within a network leads to new
insights and potential to generate new hypotheses [20]. In this
approach, score of each gene depends on the functional impor-
tance inferred from the genomic knowledge combined with the
clinical features representing phenomic knowledge. Centrality
measures are calculated from a modified version [21] of the
Kleinberg algorithm [22] similar to Google’s Page rank algorithm
[23] extended for the Semantic Web. While Semantic Web que-
rying languages do not per se naturally rank the retrieved results
from RDF graphs, we have adapted a technique described by M.
Sougata et al. [21,24] for domain-specific ranking to rank the re-
trieved genes from BioRDF using SPARQL (http://www.w3.org/
TR/rdf-sparql-query/). RDF graphs provide the ability to aggre-
gate and recombine loosely associated disease and molecular
information into a formal knowledge structure. This semantic
mashup can be viewed together or analyzed as a complete set.
In addition, semantic mashup are not just for viewing facts, they
can support analytical lenses and algorithms for uncovering dee-
per meaningful associations.

Thus, although there have been several other approaches
developed that either include purely genomic data [3,5–7,10,25]
or genomic data combined with either human [2,8,9,11,12,
14,26] or mouse phenomic [4] data sets in order to expedite dis-
ease gene search, our approach enables for the first time system-

atic gene prioritization without the assertion of a focus training
set by utilizing both mouse phenotypes and human disease clin-
ical features as well as their GO and pathways relationships. Our
method does not use any training data set, but extends the earlier
hypothesis that majority of the disease-causal genes are function-
ally important and share clinical features with related diseases
[5,8,11,12]. We reasoned that an integrative genomic–phenomic
approach utilizing the available human gene annotations includ-
ing human and mouse phenomic knowledge will provide more
comprehensive and valid disease candidate gene identification
and prioritization. In this study, we have focused on cardiovascu-
lar system diseases (CVD). We tested our hypothesis by prioritiz-
ing genes from the recently reported (a) hypertrophic
cardiomyopathy susceptibility loci (chromosome 7p12.1–7q21)
[27] (b) dilated cardiomyopathy loci (chromosome 10q25–26)
[28] and (c) among genes differentially expressed in dilated car-
diomyopathy [29].

2. Methods

2.1. Knowledge sources

Genomic and phenomic knowledge representation was accom-
plished by RDF conversion of datasets from multiple data sources
(see Fig. 1). These are described as follows:

2.1.1. Genomic knowledge sources

(1) Gene Ontology (GO) [30] was downloaded from Gene Ontol-
ogy website (geneontology.org/ontology/gene_ontology_
edit.obo). Corresponding human GO-gene annotations were
downloaded from NCBI Entrez Gene ftp site (ftp.ncbi.nih.gov
/gene/DATA/gene2go.gz). The resultant data set contained
15068 human genes annotated with 7124 unique GO terms.

(2) Gene-pathway annotations were compiled from KEGG [31],
BioCarta (http://www.biocarta.com/), BioCyc [32], and Reac-
tome [33]. 4772 human genes had at least one pathway
association (a total of 672 pathways).

2.1.2. Phenomic knowledge sources

(1) Mammalian Phenotype (MP) ontology [34], mouse gene
phenotype annotations and the corresponding orthologous
human genes were downloaded from Mouse Genome Infor-
matics (MGI) website (http://www.informatics.jax.org). This
data set contained 4127 human genes annotated with 4066
mouse phenotypes.

(2) A total of 977 records (423 have at least one implicated
gene) were downloaded in XML format from OMIM [35] by
searching for terms ‘‘cardiovascular” or ‘‘heart” or ‘‘cardiac”
occurring in clinical synopsis (CS) or text section (TX). JAVA
XML parsers (http://xerces.apache.org/xerces-j/) were used
to extract OMIM ID, disease name and the associated CS
and TX sections from each OMIM record. We also parsed
each TX section of OMIM record as it provides additional
clinical features to the ones available from CS section, which
is evident from Fig. 2. The entire clinical feature space encap-
sulates both clinical symptoms and affected anatomy. Clini-
cal features under the categories such as ‘‘Inheritance” and
‘‘Molecular Basis” were eliminated. Nonspecific terms such
as ‘‘syndrome” or ‘‘disease” or ‘‘disorder” were ignored.
OMIM ID and the corresponding gene associations were
downloaded from NCBI Entrez Gene ftp site (ftp://ftp. ncbi.
nlm.nih.gov/gene/DATA/mim2gene).
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