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a b s t r a c t

Optical tomography is mathematically treated as a non-linear inverse problem where the
optical properties of the probed medium are recovered through the minimization of the
errors between the experimental measurements and their predictions with a numerical
model at the locations of the detectors. According to the ill-posed behavior of the inverse
problem, some regularization tools must be performed and the Tikhonov penalization type
is the most commonly used in optical tomography applications. This paper introduces an
optimized approach for optical tomography reconstruction with the finite element method.
An integral form of the cost function is used to take into account the surfaces of the detec-
tors and make the reconstruction compatible with all finite element formulations, contin-
uous and discontinuous. Through a gradient-based algorithm where the adjoint method is
used to compute the gradient of the cost function, an alternative inner product is employed
for preconditioning the reconstruction algorithm. Moreover, appropriate re-parameteriza-
tion of the optical properties is performed. These regularization strategies are compared
with the classical Tikhonov penalization one. It is shown that both the re-parameterization
and the use of the Sobolev cost function gradient are efficient for solving such an ill-posed
inverse problem.

Crown Copyright � 2013 Published by Elsevier Inc. All rights reserved.

1. Introduction

Among the new imaging modalities expected to be available in the future, optical tomography is one of the most prom-
ising. It is used in flow diagnostics, medical imaging, food processing, etc. This laser-based probing technique may be divided
into direct imaging where the emerging signal is directly used for projection and the reconstruction imaging which is based
on the solution of an inverse problem. For both of them, recent research tends to show that the use of the long term photons,
which have travelled for a long time in the whole sample to be probed, generates more information to the image reconstruc-
tion [1].

In direct tomography, a measurable variable of the transmitted or/and reflected signals is processed in order to extract
some information about the inside of a semi-transparent medium on which a laser beam has been applied. In material with
a high level of scattering, direct tomography is of limited use because photons do not progress along a straight line and the
reconstruction is therefore non-linear, which prohibits the use of direct reconstruction methods such as the Radon transform
method [2]. The other method, also called optical tomography, is an inverse-based reconstruction technique where the
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optical properties are estimated from boundary measurements of transmitted light, providing a non-invasive diagnostic tool
for medical applications as the optical properties are related to the pathological or physiological state of tissues. The recon-
struction is done by minimizing a cost function that measures the errors between the experimental measurements at the
detectors and their prediction with a numerical model [1,3].

Major improvements have been carried out in the last decades using the full radiative transfer equation (RTE) as this
equation well describes light transport in biological tissues. Then, different forms of the RTE have been used [1,4–6] among
which the frequency domain formulation is the most used. The frequency domain approach provides an alternative to sci-
entists to avoid the technical limitations intrinsic to the use of the time-domain approach. It allows a better separation of the
optical properties by giving some additional information (phase shift) compared to the stationary domain [7]. Also, highly
accurate numerical formulations of the RTE have been achieved such as the discontinuous Galerkin finite element formula-
tion [8–10]. This method uses numerical fluxes to achieve local conservativity [11–13] compared to continuous finite ele-
ment formulations that suffer from the lack of local conservativity.

The ill-posed behavior of the inverse problem requires the use of accurate forward models of light transport coupled with
robust optimization techniques. Also, the noise which is inherent by nature to the measurements leads to a non-smooth gra-
dient of the cost function when the classical L2 inner product is used within the adjoint method and thus the related opti-
mization procedure may be slow and less accurate. In addition, parameters can be of different orders of magnitude, which
often leads to problems of crost-talk. Generally, the method of Tikhonov regularization is used to reduce these difficulties.
This technique is based on a penalization of the difference between the obtained properties and some guessed ones chosen a
priori (usually the background) within the cost function to be minimized. This old regularization method [14] which pro-
vides information to the inverse problem actually stabilizes it. However, the choice of the weigh related to the penalization
term is problematic since it often leans on the search of a particular region on the so-called L-curve [15]. The use of alter-
native inner products when extracting the gradient of the cost function, as initiated by [16], aims at smoothing the gradient
and acts as a preconditionner for the reconstruction optimization problem. Also, a re-parameterization of the functional
space related to the optical properties is performed in order to avoid over-parameterization with respect to the lack of mea-
surement information.

Then, this paper focuses on new strategies to improve the reconstruction in optical tomography by using the Sobolev gra-
dient (gradient filtering) with finite element parameterization (mesh and space approximation) of the optical parameters.
For this purposes, an optimization of the reconstruction scheme is introduced through the choice of an inner product within
the adjoint method for the computation of the cost function gradient. The adjoint equations is derived from the continuous
radiative transfer equations (CRTE). This leads, when choosing different discretization schemes, rather than reconsidering
the adjoint equations, to choose a numerical scheme for the adjoint problem that is coherent with the one chosen for the
forward problem. We thus chose the so-called ‘‘Differentiate-then-Discretize’’ approach as opposed to the ‘‘Discretize-
then-Differentiate’’ approach as defined in [17] for the simplicity and conciseness when deriving the adjoint equations,
and especially because we make use of different functional spaces (different meshes) for the states, the adjoint states, the
optical properties, etc.

The paper is organized as follows. Section 2 presents the forward model equations describing the radiative transfer equa-
tion along with the measurable quantity used for optical tomography purposes. Section 3 states the cost function that is to be
minimized, writes down the optimization problem and describes carefully the adjoint problem based on the continuous
radiative transfer equation along with the cost function directional derivatives. Section 4 gives some specific tools that
are to be used to cope with the ill-posed nature of the inverse problem, i.e., the use of regularization. Specially, the classical
Tikhonov regularization is presented with its pros and cons. Other strategies such as the use of an appropriate finite element
(mesh and space) parameterization of the optical properties and the use of the Sobolev gradient instead of the usual Hilbert
one are of interest. Numerical tests are performed on the presented regularization tools with a comparative analysis. Espe-
cially, the use of the Sobolev Gradient and the appropriate re-parameterization is compared with the classical use of the Tik-
honov regularization. The last section deals with the conclusions and extended future work.

2. Forward model equations

2.1. Model equations

In optical tomography, the forward model is a numerical model of light transport within the tissues. It aims at computing
the prediction of the measurements at the detectors once the source and the optical properties of the medium are known.
This model is described by a Boltzmann type integro-differential equation called the radiative transfer equation [1,18]. This
equation is difficult to solve and analytical solutions are available only for simple cases. Below we present the equations of
the forward model and the measurement prediction.

The forward model used is this study is the frequency domain form of the radiative transfer equation which writes [3]:
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