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Abstract

The pressure–volume–temperature (PVT) dependencies of four molten polystyrenes (PS) were determined at TZ450–530 K, and PZ0.1–

190 MPa. In addition, five sets of published PVT data for PS were examined. The Simha–Somcynsky (S–S) lattice-hole equation of state (eos) was

used to analyze the data. Fitting the data to eos yielded the characteristic reducing parameters, viz. P*, V*, T*, where from the Lennard–Jones

measures of energetic (3*), and volumetric (v*) interactions were calculated. It was found that: (1) the values of the interaction parameters for PS

resins varied, viz. 27.7%3*%35.2, and 35.5%v*%50.2; (2) 3* was dependent on v*, and (3) 3* and v* linearly increased with the logarithm of

molecular weight. In addition, these volume-averaged interaction parameters depend on the chain configuration, as well as the presence of

additives.
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1. Introduction

The pressure–volume–temperature (PVT) dependence of

polymers has been measured to determine compressibility and

the thermal expansion coefficients, important for process

designing. However, these measurements, combined with

adequate theoretical description, may provide an insight into

the internal structure and the volume-averaged interactions.

Several equations of state (eos) for liquids have been proposed

[1–7]. In addition Tait empirical relation has been used [8].

Curro [9], Zoller [10], Rodgers [11], Rudolf et al. [12],

reviewed and evaluated the suitability of several eos to

describe the PVT behavior. Of the six mentioned theoretical

expressions [11] the two: Dee and Walsh (D–W) modified cell

model (MCM) [7], and Simha and Somcynsky (S–S) lattice-

hole theory [4] performed well.

D–W modification of the Prigogine et al. cell model

amounts to increasing the Lennard–Jones hard-core volume

universally by 7%. The resulting eos provides good fit of data,

with a set of characteristic reducing parameters (P*, T*, and

V*), and a single ‘adjustable’ quantity, M0/c, where M0 is

segmental molecular weight, and 3c is the external degree of

freedom [13].

The S–S theory has been used to provide description of the

cohesive energy density [14,15], internal pressure, PVT

behavior [16–20], etc. The great advantage of the S–S

derivation is direct incorporation of the free volume parameter,

h, which in turn may be used to interpret variety of dynamic

properties, e.g. viscosity [21,22]. Considering the fundamental

nature, precision, and wide applicability of the S–S theory, the

following text will focus on the use of S–S eos. Fitting the

experimental data to the eos yields the P*, T*, and V*

parameters, which are related to the Lennard–Jones 6–12

interaction quantities [23]: the maximum attractive energy, 3*,

and the segmental repulsion volume, v*. For single-component

polymeric liquids the PVT behavior is fully described by these

two parameters through an adequate eos.

Over the years a large number of polymeric systems has

been studied and the P*, T*, and V* reducing parameters have

been tabulated, e.g. see [9–12]. However, the P*, T*, V*

values published by various authors for supposedly the same

polymer are different. Thus, this work aims to analyze the

variability of the derived from S–S eos interaction parameters.

Three potential sources will be examined: the method of

testing (e.g. procedure, reproducibility), the computational

methods, and variability of the tested material, viz. molecular

weight and its distribution, additives introduced by the

manufacturer, etc. Since the problem is general, for simplicity

PS was selected. PVT data for several PS resins were

measured in the author’s laboratory, while additional sets

were taken from literature.
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2. Theory

The Simha–Somcynsky lattice-hole theory [4] considers

an amorphous, condensed system as a mixture of occupied

(by chain segments or small molecules) and empty sites. For

macromolecules, the statistical segments are defined as MsZ
Mn/s, where Mn is the number average molecular weight of a

statistical macromolecule, composed of s statistical segments.

The authors incorporated the configurational entropy of

mixing as derived by Huggins and Flory for linear chains,

and the inter-segmental interactions via the Lennard–Jones

[23] (L–J) potential with the characteristic segmental energy,

3*, and volume, v*, per statistical segment:

E0 Z lrepulsr
Km Klattractr

Kn; m Z 10 to 13;

n Z 6 or 7
(1a)

The form of L–J potential (Eq. (1a)) was originally

adopted because it provided satisfactory description for the

second virial coefficient of a gas with m, nO4. Later, the

second attractive interactions term was derived using

quantum mechanics (for hydrogen and helium, nZ6 and 7

was found, respectively). The first empirical term of Eq. (1a)

has been identified as originating in repulsive interactions.

Over the years the L–J potential (Eq. (1a) with nZ6, and

mZ12) was applied to many condensed systems, quite

different than these considered by L–J.
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Prigogine et al. [1,2] used the L–J mean-field relation to

describe interactions between statistical segments of s-unit

molecules (see Eq. (1b), in which the radius, r, of Eq. (1a) is

replaced by cell volume, v). The authors also introduced the

number 3c of the external, volume-dependent degrees of

freedom, given by geometry and environment of each solvent

molecule or polymeric segment. For linear, flexible mol-

ecules [13]:

3c Z s CK (2)

Simha derived [24] KZ3, and this value has been used

with S–S eos applied to low molecular weight solvents. For

other eos’ K is empirical, changing from one eos to the next

(KZ0.86 or 1.78) [13]. However, for high molecular weight

polymers, where the number of statistical segments s[3,

the simplifying relation, 3c/sz1, is usually employed.

In the S–S theory the variables of state, and derived

quantities are scaled. The three characteristic scaling par-

ameters of pressure, temperature, and volume are defined

as [4]:
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In the cell model, zqZs(zK2)C2 is the number of

interchain contacts in a lattice of coordination number z, and

R is gas constant. Using the reduced variables (indicated by

tilde), SS expression for the configurational free energy is a

function of specific volume, ~V , temperature, ~T , and the hole

fraction: hZhð ~V ; ~TÞ:

~F h
F

F�
Z ~F½ ~V ; ~T ; hð ~V ; ~TÞ� (4)

Since the theory is general, describing a common ~P ~V ~T
surface, the reduced coordinates of the critical point are

universal [25], thus: 3*fTc; 3*/v*fPc; v*fVc. From Eq. (4),

the eos is derived in form of coupled equations:

3c½ðUK1=3Þ=ð1KUÞKyQ2ð3AQ2K2BÞ=6 ~T�C ð1KsÞ

K
s

y

	 

ln½ð1KyÞ Z 0� (5)

~P ~V ~T Z ð1KUÞK1 C2yQ2ðAQ2KBÞ= ~T (6)

with the occupied site fraction yZ1Kh, and notation:

QZ1=ðy ~VÞ; UZ2K1=6yQ1=3. The coefficients AZ1.011, and

BZ1.2045 account for non-nearest neighbors interactions in

face-centered cubic lattice with the coordination number zZ
12. The coupled equations describe the PVT surface, and

associated with it free volume function, hZhð ~V ; ~TÞ.
The optimum value of the reducing parameters (P*, T*, and

V*) is determined by fitting the experimental PVT-surface in

the molten state to Eqs. (5) and (6). Historically, two methods

have been used, the sequential [26], and simultaneous. The

sequential method obtains T* and V* from the ambient pressure

V vs. T data, and then P* is computed from the pressure

dependencies. However, its values vary with the selected set of

VZV(P, TZconst); hence P* has to be averaged over the range

of P and T [27].

During the last two decades the simultaneous least-squares

(lsq) fit of all data to S–S eos has been employed, Thus for

example, Scientiste from MicroMath has been used [14–20].

Rapid convergence is obtained in two-steps: (1) fitting data to

the polynomial expression [16], ~V Z ~Vð ~P; ~TÞ, provides the

initial values of P*, T*, and V*, and then (2) fitting the data to

the coupled Eqs. (5) and (6). The computation provides

numerical values of hZhð ~P; ~TÞ, as well as the characteristic

parameters: P*, T*, and V*, from which the volume-averaged

interaction parameters, 3* and v*, may be calculated using

Eq. (3). It can be shown that h decreases as 3* increases [20].
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