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a b s t r a c t

Energy-conserving methods have recently gained popularity for the spatial discretization
of the incompressible Navier–Stokes equations. In this paper implicit Runge–Kutta meth-
ods are investigated which keep this property when integrating in time. Firstly, a number
of energy-conserving Runge–Kutta methods based on Gauss, Radau and Lobatto quadra-
ture are constructed. These methods are suitable for convection-dominated problems (such
as turbulent flows), because they do not introduce artificial diffusion and are stable for any
time step. Secondly, to obtain robust time-integration methods that work also for stiff
problems, the energy-conserving methods are extended to a new class of additive Run-
ge–Kutta methods, which combine energy conservation with L-stability. In this class, the
Radau IIA/B method has the best properties. Results for a number of test cases on two-stage
methods indicate that for pure convection problems the additive Radau IIA/B method is
competitive with the Gauss methods. However, for stiff problems, such as convection-
dominated flows with thin boundary layers, both the higher order Gauss and Radau IIA/
B method suffer from order reduction. Overall, the Gauss methods are the preferred
method for energy-conserving time integration of the incompressible Navier–Stokes
equations.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Advantages of energy-conserving methods

In this work we address the time integration of flows governed by the incompressible Navier–Stokes equations. In case of
inviscid flow with periodic or no-slip boundary conditions these continuous equations possess a number of properties, also
called symmetries or invariants, see e.g. [1]. Such inviscid flows are of interest because many flows of practical importance are
convection-dominated. In this paper we focus on one important invariant of inviscid incompressible flows, namely the ki-
netic energy. Upon discretizing the continuous equations in space and/or time this invariant is often not conserved. There
are, however, several (related) reasons to have a discretization conserving energy in a discrete sense. Firstly, from a physical
point of view, an energy-conserving scheme is free of numerical diffusion. This is important for turbulent flow simulations
with DNS or LES, because it prevents numerical diffusion from overwhelming the molecular diffusion (in case of DNS) or the
effect of the sub-grid model (in case of LES), so that the energy spectrum is not affected. Energy-conserving discretizations
guarantee that all diffusion is modeled (laminar and/or turbulent), and not artificial. This is why energy-conserving schemes
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are seen as a necessity for DNS and LES by different researchers, see e.g. [2–8]. Energy-conserving methods necessitate the
use of central schemes for the convective terms. Upwind schemes, typically used in RANS simulations of turbulent flows, are
robust because they introduce numerical diffusion, but should for this reason not be used in LES or DNS. Even high-order
upwind methods can damp turbulence fluctuations and mask the effects of the sub-grid scale models used in LES [9–11].
Although central schemes do not have numerical diffusion, they introduce dispersive errors; these were found to be less det-
rimental than diffusive errors, at least in the simulation of turbulent channel flow [12]. Secondly, from a more mathematical
point of view, discrete energy conservation provides a non-linear stability bound to the solution (see e.g. [13]). Flow simu-
lations are then stable for any mesh and any time step, so that these parameters can be chosen purely based on accuracy
requirements. This is especially important for simulating turbulent flows that involve large time and/or length scales, like
weather prediction [14]. Lastly, energy-conserving methods are important when dealing with coarse grids and large time
steps. Simulations of turbulence with DNS and LES are computationally very expensive and mesh sizes are kept as large
as possible in practice, even under-resolved. On the other hand, the order of a discretization scheme is defined for vanishing
mesh sizes and time steps, and on coarse grids it is not obvious whether the order of a method is still a good measure of
accuracy and whether a formally higher order method is preferred over a formally lower order method [15,16]. Energy-con-
serving methods are of particular interest then, because they lead to well-posed discrete operators and as a consequence to
well-behaved global errors.

One application of energy-conserving methods that we have in mind is wind-turbine wake aerodynamics, a situation in
which turbulent flow structures travel over large distances while mixing with the atmospheric boundary layer [17]. This is
an example in which one cannot resolve the small scale turbulent fluctuations in detail; we believe that preserving their total
energy and dissipation rate is then of utmost importance.

Discrete energy conservation requires an appropriate spatial discretization and an appropriate temporal discretization
method. The focus of this paper is on the latter, but in order to provide a background for the reader, we will summarize exist-
ing work on both spatial and temporal energy conservation.

1.2. Overview of spatially energy-conserving schemes

The first energy-conserving scheme for the incompressible Navier–Stokes equations is probably Harlow and Welch’s stag-
gered grid method [18]. The staggering of the variables leads to a method that conserves mass, momentum, energy and vor-
ticity, and strongly couples pressure and velocity, making it the method of choice for simulating incompressible flows on
Cartesian grids [19]. Ham et al. [20] extended the method to retain these properties on non-uniform grids. In order to sim-
ulate flows around complex geometries, Wesseling et al. [21,19] extended the method to general structured grids that can be
described by a Cartesian grid in computational space. On unstructured meshes staggered methods have been investigated by
Perot and co-workers [3,22]. Mahesh et al. [2] also consider energy-conserving methods for unstructured meshes and for-
mulate a second order staggered method for tetrahedral elements, but propose a non-staggered formulation for elements
of more general shape. This results in a formulation that is not fully energy-conserving, because the pressure gradient con-
tributes to the kinetic energy.

In fact, the contribution of the pressure gradient to the kinetic energy is intrinsic to non-staggered layouts [23,12]. Felten
and Lund [12] show that this energy error makes staggered schemes superior to collocated schemes in case of inviscid sim-
ulations and in case of viscous simulations with relatively coarse meshes. However, operators on collocated meshes can be
‘shifted’ to obtain operators for staggered meshes, as shown by Hicken et al. [24]. This elegant approach can be seen as a
generalization of the work of Perot to general meshes [3], including locally refined ones. Numerical experiments show that
on anisotropic Cartesian grids, where the local truncation error of the gradient is inconsistent (zeroth order), it is still pos-
sible to have a first order accurate solution, emphasizing the positive influence of energy-conserving methods on global dis-
cretization errors.

High-order energy-conserving methods have been addressed for finite difference methods by Morinishi et al. [23] and
Vasilyev [25], who indicate how to obtain any (even) order of accuracy on uniform grids based on Richardson extrapolation.
On non-uniform grids strict conservation and (local) order of accuracy cannot be obtained simultaneously. Verstappen and
Veldman [8,7] employ a finite volume method and construct a fourth order accurate method on non-uniform grids that re-
tains all properties of the Harlow and Welch scheme. They call their method ‘symmetry-preserving’, because it is based on
mimicking symmetry properties of continuous operators in a discrete sense, instead of on minimizing the local truncation
error. Preserving these symmetries leads to energy conservation. Again, it should be stressed that the global order of accu-
racy cannot be derived from the local truncation error alone; the discretized operator is at least of equal importance, and it is
indeed the energy-conserving schemes that lead to a discretized operator that is well-posed, even on coarse meshes.

Another way to obtain higher order methods is to use compact (implicit) schemes, either in finite difference or finite vol-
ume context (see e.g. [26,27] for references). Implementation of boundary conditions is easier due to their smaller compu-
tational stencil, and furthermore they have better resolution of high wave numbers than explicit schemes. Knikker [26]
obtains energy conservation with a fourth order compact finite difference scheme with the nonlinear terms in skew-sym-
metric form, Hokpunna and Manhart [27] mention that energy conservation for compact finite volume methods is still an
open issue.

Lastly, this section would be incomplete without mentioning the recent review article of Perot [28] and the work on ‘mi-
metic’ methods, like the support-operator method by Shashkov [29], Hyman et al. [30], the work on summation-by-parts

B. Sanderse / Journal of Computational Physics 233 (2013) 100–131 101



Download	English	Version:

https://daneshyari.com/en/article/518764

Download	Persian	Version:

https://daneshyari.com/article/518764

Daneshyari.com

https://daneshyari.com/en/article/518764
https://daneshyari.com/article/518764
https://daneshyari.com/

