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a b s t r a c t

The hp-Multigrid as Smoother algorithm (hp-MGS) for the solution of higher order accurate
space–time discontinuous Galerkin discretizations of advection dominated flows is pre-
sented. This algorithm combines p-multigrid with h-multigrid at all p-levels, where the
h-multigrid acts as smoother in the p-multigrid. The performance of the hp-MGS algorithm
is further improved using semi-coarsening in combination with a new semi-implicit Run-
ge–Kutta method as smoother. A detailed multilevel analysis of the hp-MGS algorithm is
presented to obtain more insight into the theoretical performance of the algorithm. As
model problem a fourth order accurate space–time discontinuous Galerkin discretization
of the advection–diffusion equation is considered. The multilevel analysis shows that the
hp-MGS algorithm has excellent convergence rates, both for steady state and time-depen-
dent problems, and low and high cell Reynolds numbers, including highly stretched
meshes.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Discontinuous Galerkin finite element methods are well suited to obtain higher order accurate discretizations on unstruc-
tured meshes. The use of basis functions which are only weakly coupled to neighboring elements results in a local discret-
ization which allows, in combination with hp-mesh adaptation, the efficient capturing of detailed structures in the solution,
and is also beneficial for parallel computing. During the past decade this has stimulated a large amount of research in both
the development and analysis of DG methods and resulted in a wide variety of applications. For an overview of various as-
pects of DG methods, see e.g. [6,12].

Space–time discontinuous Galerkin methods are a special class of DG methods in which space and time are simulta-
neously discretized using basis functions which are discontinuous, both in space and time. The resulting discretization be-
longs to the class of arbitrary Lagrangian Eulerian (ALE) methods, is implicit in time and fully conservative on moving and
deforming meshes as occur in fluid–structure interaction and free boundary problems, see e.g. [14,29,30,33].

For higher order accurate DG discretizations the efficient solution of the algebraic system resulting from an implicit time
discretization is, however, non-trivial, in particular for steady state solutions of advection dominated flows. For these
problems standard iterative techniques, such as multigrid and Krylov subspace methods, are generally suboptimal, especially
on highly stretched meshes in boundary layers. This lack of computational efficiency currently seriously hampers the
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application of higher order accurate DG methods to large scale industrial applications. An important reason for this relatively
slow convergence rate is that the algebraic system resulting from a higher order accurate DG discretization has quite differ-
ent mathematical properties compared to lower order discretizations. The straightforward application of iterative tech-
niques originally developed for lower order methods is therefore generally not optimal and should be supported by a
more detailed mathematical analysis.

The need for improved convergence rates in the iterative solution of higher order accurate DG discretizations has moti-
vated the research presented in this and the companion article [32], to which we will refer as Part II. The objectives of this
research are to develop, analyze and optimize new multigrid algorithms for higher order accurate space–time DG discreti-
zations of advection dominated flows. For this purpose we introduce the hp-Multigrid as Smoother algorithm. This algorithm
combines p-multigrid with h-multigrid at all p-levels, where the h-multigrid acts as smoother in the p-multigrid. The the-
oretical tool to investigate the performance of the hp-MGS algorithm will be a detailed multilevel analysis, which is the main
topic of this article. In Part II we will use this analysis to optimize the semi-implicit Runge–Kutta smoother in the hp-MGS
algorithm in order to account for the special features of higher order accurate DG discretizations. In addition, numerical sim-
ulations will be presented which show the excellent performance of the hp-MGS algorithm on a number of test cases, includ-
ing thin boundary layers and non-constant coefficients. In this article we will focus on space–time DG discretizations, but the
results and techniques can be straightforwardly extended to other types of implicit DG discretizations, both for steady state
and time-accurate problems.

As background information we start with a brief overview of the main algorithms developed during the past decade for
the iterative solution of higher order accurate DG discretizations of the compressible Euler and Navier–Stokes equations,
which are important models for advection dominated flows. The main techniques to solve these equations have been mul-
tigrid and preconditioned Krylov methods, in particular flexible GMRES. In this article we will focus on multigrid methods.
For preconditioned Krylov methods we refer to [7,23,26]. Multigrid methods can, however, also be efficient preconditioners
for flexible GMRES, see e.g. [26].

Multigrid methods applied to higher order accurate DG discretizations can be classified as p-, h-, and hp-multigrid meth-
ods. In p-multigrid the coarser levels are obtained using a sequence of lower order discretizations, whereas in h-multigrid
coarser meshes are used. Here p refers to the polynomial order of the basis functions in the DG discretization and h to
the mesh size. Combinations of both methods result in hp-multigrid.

The main benefit of p-multigrid is its simplicity since at all levels the same mesh is used, which makes the implementa-
tion on unstructured meshes straightforward. Applications of p-multigrid to higher order accurate DG discretizations of
advection dominated flows can be found in [2,8,17–19,21]. The resulting algebraic system at the coarsest p-multigrid level
can, however, still be very large. For the Euler equations an implicit Euler time integration method at the p ¼ 0 level, with
GMRES in combination with an ILU preconditioner or an LU-SGS algorithm to solve the resulting algebraic system, is suitable
[2,17]. For the compressible Navier–Stokes equations an hp-multigrid method is a better alternative [21,26]. In most studies
of the compressible Navier–Stokes equations a polynomial order p ¼ 1 is used at the coarsest level, which gives significantly
better results than p ¼ 0, see e.g. [26]. In this multigrid method the algebraic system at the coarsest p-level is solved with an
h-multigrid method. For nonlinear problems it was concluded in [26] that the linear or Newton h-multigrid method is sig-
nificantly more efficient as a coarse grid solver in hp-multigrid than the nonlinear Full Approximation Scheme.

A crucial element in both p- and hp-multigrid algorithms are the smoothers. Many different types of smoothers have been
tested for higher order accurate DG discretizations. A serious problem with many of these smoothers is their lack of robust-
ness. Often significant under-relaxation is necessary to ensure stability of the iterative method. Under-relaxation is, how-
ever, not necessary when block Jacobi and (symmetric) block Gauss–Seidel methods are used [8,18,21,26]. For problems
containing boundary layers line smoothers are generally necessary to deal with large aspect ratio meshes [8,26]. Explicit
and (semi)-implicit time integration methods have also been used as smoothers [2,3,16,25]. In particular, Runge–Kutta
methods can be developed into efficient multigrid smoothers when they are used as pseudo-time integrators, which was
originally proposed in [13], see also [20]. Since time-accuracy is not important in pseudo-time significant freedom is avail-
able to optimize Runge–Kutta smoothers for good multigrid performance [16,25,29].

The theoretical analysis of multigrid algorithms for DG discretizations of advection dominated flows has been quite lim-
ited. Many of these studies considered the advection–diffusion equation or linearized versions of the compressible Euler
equations. The main analysis tool to understand the performance of the multigrid algorithm has been single grid and
two-level Fourier analysis [8,9,16,18,24,25,33]. For a more general discussion of these techniques we refer to [11,28,35,37].

Despite this extensive research currently available multigrid algorithms for higher order DG discretizations do not yet
achieve optimal performance. In this article we present therefore a new approach, viz. the hp-Multigrid as Smoother (hp-
MGS) algorithm. The hp-MGS algorithm is an extension of the Multigrid as Smoother algorithm, which was originally pro-
posed in [22,34], to higher order accurate DG discretizations. The main focus in this article is on the multilevel analysis
of the hp-MGS algorithm, which is crucial to understand and optimize its performance. In the multilevel analysis three p-lev-
els and three uniformly and three semi-coarsened h-levels are used in order to obtain accurate estimates of the operator
norms and spectral radius of the hp-MGS multigrid error transformation operator. In Part II this analysis will be used to opti-
mize the coefficients in the semi-implicit Runge–Kutta smoother for a fourth order accurate space–time DG discretization of
the two-dimensional advection–diffusion equation.

The outline of this article is as follows. In Section 2 we briefly discuss the space–time DG discretization and in Section 3
we introduce the hp-MGS algorithm and the semi-implicit Runge–Kutta smoother. The multigrid error transformation
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