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The main objective of this paper is the derivation and validation of a free surface 
Neumann boundary condition for the advection–diffusion lattice Boltzmann method. Most 
literature boundary conditions are applied on straight walls and sometimes on curved 
geometries or fixed free surfaces, but dynamic free surfaces, especially with fluid motion 
in normal direction, are hardly addressed. A Chapman–Enskog Expansion is the basis for 
the derivation of the advection–diffusion equation using the advection–diffusion lattice 
Boltzmann method and the BGK collision operator. For this numerical scheme, a free 
surface Neumann boundary condition with no flux in normal direction to the free surface 
is derived. Finally, the boundary condition is validated in different static and dynamic 
test scenarios, including a detailed view on the conservation of the diffusive scalar, the 
normal and tangential flux components to the free surface and the accuracy. The validation 
scenarios reveal the superiority of the new approach to the compared literature schemes, 
especially for arbitrary fluid motion.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The lattice Boltzmann (LB) method [1] is commonly applied to hydrodynamic fluid flow [2–4] described by the Navier–
Stokes equations. Additionally, the LB method is suitable to solve the diffusion and advection–diffusion equation. Possible 
applications are thermal flows [5,6], multi-component flows [7] or solute transport in porous media [8]. Most of the LB 
implementations use the Bhatnagar–Gross–Krook (BGK) collision operator [9], which limits its applications to isotropic dif-
fusion phenomena. By replacing the BGK with a multi-relaxation time (MRT) operator, an anisotropic diffusion behavior is 
possible [10].

A Neumann boundary condition specifies the solution of a first derivative at a boundary. Regarding the advection–
diffusion LB method, the boundary condition is defined on the flux, which is the spatial derivative of the diffusive scalar. 
This paper focuses on a zero flux condition in normal direction to the free surface. Additionally, there are no physical 
restrictions in tangential direction.

Neumann and other boundary conditions are usually applied on straight walls [8]. Towards curved or free surface bound-
aries there are only few approaches in literature. The easiest way to impose a boundary condition is the bounce-back 
scheme [11], resulting in a zero flux in normal direction. Unfortunately, the tangential parts also vanish. Modified bounce-
back schemes, altered by the boundary direction [12,13], still affect the tangential flux. A Neumann boundary condition is 
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presented in [14], which interpolates the macroscopic quantities at the boundary, and demonstrates an appropriate recon-
struction of the tangential flux. However, if interpolation is not possible, the fall-back boundary condition is the bounce-back 
rule. A similar interpolation approach basing on the bounce-back approach and using the particle distribution functions is 
presented in [15]. Fixed curved boundaries are examined and a first order accuracy for the Neumann boundary condition 
with arbitrary fluxes is achieved.

Most of these schemes are derived for static boundary problems, like simulations of porous media or curved channels. 
But considering free surface flows, especially movements in normal direction occur. All mentioned schemes are not appro-
priate to model these kinds of moving boundary problems [14], because the first order moment of the LB method is not 
conserved resulting in an unphysical concentration of the diffusive scalar at the boundary depending on the velocity.

The free surface LB method described in [5] provides a suitable boundary condition for arbitrary free surface flows. 
Nevertheless, some drawbacks are identified during the revision of this approach. Therefore, after a short introduction 
into the free surface advection–diffusion LB method, a new approach is derived, where these drawbacks are eliminated or 
minimized. Finally, the boundary condition is validated in different static and dynamic test scenarios, including a detailed 
view on conservation of the diffusive scalar, the normal and tangential flux components to the free surface and the accuracy.

2. Free surface advection–diffusion lattice Boltzmann method

The single phase-continuum conservation equations to simulate incompressible fluid transport are the incompressible 
Navier–Stokes equations. Suppose an additional diffusive scalar �, e.g., representing the thermal energy density or the 
concentration of an additive. Due to diffusion and the dynamics of the fluid the diffusive scalar is distributed described by 
the advection–diffusion equation

∂t� + ∇ · (�u
) = ∇ · (a

(
�
)∇�

)
, (1)

where t is the time and u the divergence free macroscopic velocity and a the diffusion coefficient, which can either depend 
on � or is a constant value.

LB models base on particle distribution functions (pdf) f
(
x,v, t

)
, describing the probability of finding a particle with 

microscopic velocity v at position x at time t . The basic idea for the derivation of the LB method [2,4,16,17] is to solve 
the linear transport equation for pdfs in the physical momentum space. The D3Q19 stencil [18], a finite set of 19 discrete 
velocities ci with lattice weights ωi , discretizes the microscopic phase space. The domain is covered by a regular lattice 
consisting of cubic cells with side length δx . In each cell the diffusive scalar is modeled by the discretized pdfs f i and the 
macroscopic quantity is computed by
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∑

i

f i . (2)

For all cells the pdf values collide and stream to the neighbor cells using the lattice displacement vector ei = ciδt and 
the time resolution δt . The so-called BGK collision operator [9] uses a single relaxation time τ to relax towards the local 
equilibrium, which reads in the discretized form
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where f eq
i is the Maxwell equilibrium distribution [16]
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where cs = δx/(
√

3δt) is the lattice speed of sound. The relaxation time τ is related to the diffusion coefficient a by

a = c2
s (τ − 0.5δt). (5)

The Mach number describes the ratio of the characteristic fluid velocity to the lattice speed of sound. In the incompressible 
flow limit, i.e., for small Mach numbers Ma < 0.1, the advection–diffusion equation (1) is derived by a Chapman–Enskog 
expansion in Appendix A.

The validation scenarios require a Dirichlet boundary condition for straight walls, which ensures a constant value �w by 
a non-equilibrium bounce-back approach [12]
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where i denotes the inverse direction of i.
A free surface advection–diffusion LB method is necessary for the simulation of moving interfaces between immiscible 

gas and liquid fluids. It has to be guaranteed that the gas phase is separated by a closed interface layer from the fluid 
phase [19]. Thus each lattice cell has a certain state: gas, interface or liquid. To ensure mass conservation a volume of 
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