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Inconsistent discrete expressions in the boundary treatment of Navier–Stokes solvers and 
in the definition of force objective functionals can lead to discrete-adjoint boundary 
treatments that are not a valid representation of the boundary conditions to the 
corresponding adjoint partial differential equations. The underlying problem is studied 
for an elementary 1D advection–diffusion problem first using a node-centred finite-
volume discretisation. The defect of the boundary operators in the inconsistently defined 
discrete-adjoint problem leads to oscillations and becomes evident with the additional 
insight of the continuous-adjoint approach. A homogenisation of the discretisations for 
the primal boundary treatment and the force objective functional yields second-order 
functional accuracy and eliminates the defect in the discrete-adjoint boundary treatment. 
Subsequently, the issue is studied for aerodynamic Reynolds-averaged Navier–Stokes 
problems in conjunction with a standard finite-volume discretisation on median-dual grids 
and a strong implementation of noslip walls, found in many unstructured general-purpose 
flow solvers. Going out from a base-line discretisation of force objective functionals which 
is independent of the boundary treatment in the flow solver, two improved flux-consistent 
schemes are presented; based on either body wall-defined or farfield-defined control-
volumes they resolve the dual inconsistency. The behaviour of the schemes is investigated 
on a sequence of grids in 2D and 3D.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The finite-volume method is one of the most established approaches to approximately solve the integral Navier–Stokes 
equations for complex geometries. Most implementations claim to be second-order accurate in space. By construction, the 
finite-volume method conserves the transported quantities like mass, momentum, energy, etc. on a given mesh locally on 
the cell level and globally throughout the fluid domain. Unless conservation is lost due to flux inconsistencies between 
flow solver and post-processing, the outputs (such as integral force components) predicted by the CFD method benefit from 
the conservation property. Therefore, the discretisation of integral output quantities, which are also referred to as objective 
functionals, should account for the discretisation used in the flow solver.

The solution of the adjoint problem is the natural connection between the linearisations of the residual and the con-
sidered objective functional. Consequently, the adjoint system inherits all the potential inconsistencies lying between the 
residual and the objective; either on the level of partial differential equations (PDE) when the continuous-adjoint prob-
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lem is constructed in a derive-then-discretise approach [14,15,25,28,26], or on the discrete level when the discrete-adjoint 
system is set up in a discretise-then-derive strategy [7,6,20,19,3,9].

In the continuous-adjoint method, a set of adjoint PDE is devised via integration by parts from the Lagrange polynomial 
which is the linearised integral objective functional augmented by the differential governing equations weighted by the 
adjoint variables. It is important to note that the adjoint PDE and its boundary conditions can only be formulated if the 
primal field equations, its boundary conditions and the objective functional are compatible. Subsequently, the adjoint system 
consisting of PDE, boundary conditions and sensitivity equation should be discretised in a consistent way, such that within 
the asymptotic range the discretisation error converges to zero at a certain order as the mesh is refined. In principle, the 
discretisations for the adjoint equations and the governing non-linear equations are independent and can be individually 
chosen. In practice, huge portions of the (non-linear) primal discretisation schemes may be reused for the adjoint problem, 
particularly for the self-adjoint operators appearing in the PDE. However, consistency only guarantees that the discrete 
objective functional and the corresponding adjoint-based sensitivity derivative match in the continuous limit. In general, the 
method does not output the exact derivative of the discrete objective functional on a given mesh.

The starting point for the construction of the discrete-adjoint method is the discretisation of the primal problem and the 
objective functional. Both are differentiated in a discrete sense. Accordingly, the discrete Lagrange polynomial consists of 
the discrete objective functional augmented by the algebraic constraints (discretised governing equations) weighted by the 
corresponding discrete-adjoint multipliers. Summation by parts, the discrete equivalent of integration by parts, yields the 
transposed or discrete-adjoint equations. The output of the discrete-adjoint approach is the exact derivative of the discrete 
objective functional on a given mesh, provided the discrete differentiation is complete and correct, the discrete-adjoint 
equation system is linearised about a fully converged reference solution and is fully converged itself. Instead of solving the 
discrete-adjoint equations linearised about the converged non-linear steady-state solution, a sequence of linearised algebraic 
operations in a CFD code can be carried out in reverse order recomputing or restoring the linearisation point in every step. 
This is possible in a (semi-)automated approach known as adjoint mode of algorithmic differentiation (e.g. [4]). Forward and 
reverse evaluations should yield the same derivative of the sequence output with respect to the sequence input. Following 
the ideas of Giles et al. [5,7], Nielsen et al. [20] have manually ensured primal–dual equivalence throughout the iteration 
process of a linearised, unstructured finite-volume Navier–Stokes method.

Discrete differentiation is a straightforward algebraic exercise but can be tedious when carried out manually for com-
plex problems. Having derived the discrete objective functional and the discrete governing flow equations, the discrete-
adjoint problem obtained via summation by parts is simply a consequence of the primal discretisation. As opposed to the 
continuous-adjoint method, the discrete adjoint can, in principle, be constructed for arbitrary discrete objective function-
als, which is very welcome in practical application. However, unlike the forward problem, the discrete-adjoint problem 
collects influences from the discrete objective functional and the discrete governing equations. Thus, inconsistencies or in-
compatibilities in the inputs are directly inherited to the discrete-adjoint problem which then becomes a “sensor” revealing 
such inconsistent definitions present in the primal discretisation. Suffering inconsistent inputs, the discrete-adjoint solution 
cannot necessarily be considered a valid approximation to the corresponding adjoint PDE.

This has been observed for different discretisation methods, in particular of higher-order. Adjoint-consistent Discontin-
uous-Galerkin schemes for aerodynamic Euler and Navier–Stokes flow problems are presented for example by Lu [18], Oliver 
and Darmofal [22] and Hartmann et al. [8,10]. Irregularities and spurious oscillations are observed in the adjoint field so-
lution in conjunction with adjoint inconsistent (wall) boundary formulations [18,8,10]. Such irregularities are eliminated 
through adjoint-consistent schemes. Moreover, it is demonstrated that the accuracy of functional predictions and of adjoint-
based functional error estimators generally increases when adjoint-inconsistent schemes are replaced by adjoint-consistent 
formulations. In this way, superconvergent outputs of (adjoint-based error corrected) functionals can be achieved which ex-
ceed the design-order of the schemes. The concept is carried over to a summation-by-parts finite-differencing discretisation 
of higher-order by Hicken and Zingg [11–13]. Like for the Discontinuous-Galerkin discretisations, superconvergent func-
tional outputs and an improved effectiveness of functional error estimators are observed for inviscid Euler flow cases. Liu 
and Sandu [17] systematically investigate the adjoint (in)consistency in finite-volume and finite-difference upwind schemes 
based on a 1D advection problem. Unlike the above-mentioned studies, the article at hand focuses on the implications of 
an adjoint (in-)consistency in the context of node-centred, second-order accurate finite-volume Navier–Stokes schemes with 
strong wall boundary conditions – a combination found in many CFD codes. With a linear face reconstruction used in the 
finite-volume method, functional superconvergence is not expected for second-order PDE like the Navier–Stokes equations. 
However, functional accuracy is shown to be directly related to the conservation property of the finite-volume method. 
Like in the previously mentioned studies, the regularity of the adjoint problem is linked to the flux-consistency of the 
discretisations of both the governing flow equations and the objective functional.

Adjoint boundary treatments are prone to dual inconsistencies when boundary-based objective functionals are consid-
ered, such as integral aerodynamic forces. In that case, both the discrete governing equations and the discrete objective 
functional contribute to the discrete-adjoint boundary treatment. Unless the discrete boundary flux of momentum in the 
discrete equations governing the flow exactly matches the discrete definition of the fluid-dynamic force integral in the objec-
tive functional [26], a meaningful discrete-adjoint boundary scheme cannot be expected. Since the solver balances numerical 
fluxes that usually include artificial dissipation contributions, also these terms need to be taken into consideration in the 
discrete objective functional to arrive at a valid discrete-adjoint boundary dissipation operator. The natural boundary treat-
ment in the finite-volume method is to provide the boundary fluxes to the balances of the cells adjacent to the boundaries. 
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