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In this work, we develop a novel robust Bayesian approach to inverse problems with 
data errors following a skew-t distribution. A hierarchical Bayesian model is developed 
in the inverse problem setup. The Bayesian approach contains a natural mechanism for 
regularization in the form of a prior distribution, and a LASSO type prior distribution is 
used to strongly induce sparseness. We propose a variational type algorithm by minimizing 
the Kullback–Leibler divergence between the true posterior distribution and a separable 
approximation. The proposed method is illustrated on several two-dimensional linear and 
nonlinear inverse problems, e.g. Cauchy problem and permeability estimation problem.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical models are frequently used in science and engineering, with applications in weather forecasting, climate 
prediction, chemical kinetics and oil reservoir forecasting. In these mathematical models, there are often model parameters 
or inputs that have to be estimated from indirect observational data, which constitutes an inverse problem. In practice, 
observations are inevitably noisy, due to limited precision of measurement sensors. Often the noises exhibit both heavy tail 
and skewness behavior, hence flexible non-Gaussian distributions are needed to adequately accommodate these features and 
to fully extract all relevant information. Further, inverse problems are often ill-posed in the sense that the solution lacks a 
stable dependence on data perturbations, which necessitates the use of regularization techniques [16]. Hence, obtaining a 
stable and accurate numerical solution is generally a daunting task.

In this work, we shall develop a robust hierarchical Bayesian model which provides a principled yet very flexible frame-
work for solving inverse problems. We incorporate regularization through a suitable prior distribution. Moreover, we allow 
a heavy-tailed distribution for the error via the likelihood function. The posterior distribution is obtained by using Bayes’ 
theorem. In this way, it yields an ensemble of inverse solutions consistent with the given data to various extents. In par-
ticular, it enables uncertainty quantification of a specific inverse solution within the ensemble. Furthermore, it provides a 
flexible regularization technique by selecting nuisance parameters, e.g., regularization parameter and noise level, adaptively 
and automatically, through hierarchical Bayesian modeling, via e.g., the full or empirical Bayesian treatment.
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Inference based on Bayesian hierarchical models provides an attractive tool for solving inverse problems due to its 
inherent ability to jointly estimate the regularizing parameters, noise level and inverse solution as well as to calibrate 
their uncertainties. The Gaussian error model is the most popular tool used in the existing Bayesian inverse problem setup. 
However, in practice, the normality assumption is usually violated because of the presence of skewness and kurtosis in real 
data [12]. Thus, one may seek more flexible parametric families that are capable of capturing such features of the data. The 
family of skew-normal distributions to capture the skewness in the data has been widely studied due to its mathematical 
tractability and appealing probabilistic properties [2,6,4,3]. One further extension of the skew-normal distribution is the 
skew-t distribution which allows both nonzero skewness and heavy tails in the distribution [8]. For a general background 
on the skew-normal and related distributions, see [15] for an overview.

Markov chain Monte Carlo (MCMC) methods work particularly well in this setup and is the major engine that has fueled 
the development and application of Bayesian hierarchical models [14]. Despite the popularity of MCMC based methods, they 
can be computationally expensive, and its convergence might not be easy to diagnose [10]. In this paper we investigate an 
alternative approach based on the variational method [20,19,24]. In spite of its wide popularity in the machine learning 
community, the application of variational methods to inverse problems seems largely unexplored [23,18,17,13]. Tipping and 
Lawrence (2005) [23] and Jin (2012) [17] developed Bayesian approaches to inverse problems with a heavy-tailed t model to 
cope data with outliers. Our proposed approach generalizes the method developed in [17] by a robust Bayesian formulation 
of the inverse problem using the skew-t distribution and a sparse prior structure. The attractive features of this approach 
are (i) uncertainty quantification of the computed solution, (ii) robustness to data outliers, and (iii) general applicability to 
both linear and non-linear inverse problems. We shall illustrate the efficiency of our proposed method on several ill-posed 
inverse problems.

The present work extends prior work [17] in two aspects. First, this work considers the skew-t distribution for the 
skewness of data errors, whereas [17] considers only the t-distribution. The skewness in the error distribution introduces 
an extra layer of the computational complexity in developing efficient inference algorithms. Second, this work studies a 
sparse prior distribution, which is far more complicated than the smoothness prior analyzed in [17]. It is noteworthy that 
the hierarchical Bayesian model to be developed is generally applicable to linear and nonlinear inverse problems.

The rest of the paper is structured as follows. In Section 2, we formulate the inverse problem and construct the hierar-
chical model for our case. Then we derive the variational solution and discuss its theoretical properties in Section 3. Later, 
in Section 4 we illustrate the approach on two ill-posed inverse problems, i.e., the Cauchy problem and the permeability 
estimation in reservoir simulation, and compare its performance with the more conventional Markov chain Monte Carlo.

2. Methodology

Consider the following finite-dimensional linear inverse problem

y = K(u) + ε, (1)

where K : Rm → R
n denotes the forward model, u ∈ R

m is the unknown solution of interest, K(u) represents the model 
output from the forward model, and ε is the additive error to the data. Thus, the vector y ∈ R

n represents the noisy data 
that is observed or measured. Such a problem setup arises in various physical applications. One example is the Cauchy type 
problem for the Laplace equation, where an elliptic partial differential equation (PDE) is satisfied over a region with some 
over-specified boundary conditions on a part of the boundary. For example, in case of a re-entrance space shuttle, the tem-
perature field u on the outer surface is to be estimated from the temperature and the flux measured at the inner surface, 
while an underlying PDE (steady/transient heat equation) is satisfied. This inverse problem is severely ill-posed and a regu-
larized solution is often sought for. In a Bayesian framework, the data is modeled statistically, and the statistical description 
is given by the likelihood function p(y|u), which in turn is dictated by the error distribution of the additive noise ε . Fur-
thermore, we need to specify a prior distribution p(u) on the unknown quantity u, reflecting the prior knowledge before 
collecting the data. Using Bayes’ theorem, we obtain the posterior distribution p(u|y) of the unknown u

p(u|y) ∝ p(y|u)p(u),

where ∝ denotes up to a multiplicative normalizing constant. This is the complete Bayesian solution of the inverse prob-
lem (1). Hence, we have to specify the likelihood function p(y|u) and the prior distribution p(u), which constitute the two 
essential components of constructing the Bayesian solution. In the following two subsections, we describe the likelihood 
function p(y|u) and the prior distribution p(u).

2.1. Likelihood function

In order to cope with the presence of outliers and skewness in the observational data y, we choose to model the noisy 
data by a very flexible class of distributions, i.e., the skew-t distribution. The skew-t distribution, with the scale parameter, 
skewness parameter, and degrees of freedom, includes Gaussian, centered-t , and skew-normal distribution as special cases. 
It has been intensively studied since 2001, as an extension of the skew normal family, which was first introduced by Azzalini 
[2]. There are several different but mathematically equivalent parameterizations of skew-t distributions; see, e.g., Branco and 
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